• Title/Summary/Keyword: Axial Thrust

Search Result 137, Processing Time 0.024 seconds

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.125-130
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principle design parameters, a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.

  • PDF

Analysis and Experimental Verification of the Moving-Magnet Linear Actuator with Cylindrical Halbach and Radial Array

  • Jang, Seok-Myeong;Park, Jang-Young;Lee, Sung-Ho;Cho, Han-Wook;Jang, Won-Bum
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.179-187
    • /
    • 2003
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration and to increase reliability. This paper analyzes and compares the characteristics of the tubular linear actuator with the cylindrical Halbach and radial array, respectively. A tubular linear actuator with cylindrical Halbach array, consisting of parallel magnetized arc segments instead of ideal radial and axial magnetized rings, is manufactured. The magnetic field solutions due to the PMs and to the currents are established analytically in terms of vector potential, using the 2-D cylindrical coordinate system. Motor thrust, flux linkage and back emf are then derived. Thrust characteristics according to such design parameters as magnet height and air gap length are also given. The results are validated extensively by comparison with finite element analysis (FEA). Test results such as thrust measurements are also given to confirm the analysis.

Case studies on the probabilistic characteristics of ultimate strength of stiffened panels with uniform and non-uniform localized corrosion subjected to uniaxial and biaxial thrust

  • Cui, Jinju;Wang, Deyu;Ma, Ning
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.97-118
    • /
    • 2019
  • Based on Nonlinear Finite Element Analysis (NFEA), this paper focuses on the bi-axial ultimate strength of typical bottom structures under corrosion. On one hand, uniform and not simultaneous corrosion across different structures is introduced, and surrogate models by Gaussian Process (GP) are built for both longitudinal and transverse cases individually, and corresponding probabilistic characteristics are investigated; meanwhile, corrosion effects on interaction between bi-axial stresses at ultimate state are studied. On the other hand, non-uniform localized pitting corrosion of normally distributed circular shapes is introduced, and different pitting corrosion densities are considered; structural bi-axial ultimate strengths under pitting corrosion are studied, and the results are compared with that from equivalent uniform corrosion; the probabilistic characteristics of structural ultimate strength in life cycle are studied; finally, the ultimate strength under randomly distributed pitting corrosion is compared with results from normally distributed pitting and uniform corrosion under various boundary conditions.

Strain measurement method for moving parts using IoT sensors (사물인터넷 센서를 이용한 동적 부품의 스트레인 측정 방법)

  • Ba Da Kim;Young Chul An;Jung Hyun Park;Yeong Jun Yu;Chul Hee Lee;Daeyup Lee
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • The aim of this study was to develop a method for installing strain gauges on moving, lubricating oil-filled, and sealed parts, such as drive shafts of equipment, including construction machinery. A measuring device was constructed using an embedded CPU and an IoT sensor to measure the strain of the strain gauge, which allowed for the measurement of axial torque and axial force, and subsequent analysis. To verify the performance of the developed device, the axial torque and axial force of the forklift were measured during operation using a strain gauge attached to the inside of the drive shaft. This study confirmed the possibility of measuring and analyzing the strain of a moving part, such as the inside of a drive shaft, which is sealed and filled with hydraulic oil.

Experimental Study of Film Cooling in Liquid Rocket Engine(III) (액체로켓엔진의 막냉각에 관한 실험적 연구(III))

  • Yu Jin;Choi Younghwan;Park Heeho;Ko Youngsung;Kim Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.203-207
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of film cooling in the thrust chamber of liquid rocket using LOx and Kerosene as propellant. The heat fluxes were obtained from the measured wall temperature to the axial direction of thrust chamber for different type of coolant, the various O/F ratio, mass flow rate and the location of the film cooling injector. A thin wall combustion chamber and nozzle were used to obtain the heat flux.

  • PDF

Effect of a Concentrated Mass on the Dynamic Stability of Spinning Free-Free Beam Subjected to a Thrust (회전하는 양단자유보의 동적 안정성에 대한 추력과 집중질량의 영향에 관한 연구)

  • Yoon, Seung-Joon;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.695-700
    • /
    • 2000
  • The dynamic stability of spinning beam with free boundary conditions for both edges subjected to a tip follower force $P_0+P_1cos{\Omega}t$ is analyzed. It is studied that the beam has a concentrated mass. and then the effects of the axial locations of the mass are studied. The beam is modelled with the Timoshenko type shear deformations. The Hamilton's principle is used to derive the equations of motion, and the critical spinning speed of a beam subjected to a follower force with various non-dimensional parameters is investigated. The finite elements are used with $C^0$ continuity to analyze the spinning beam model, and the method of multiple scales is tried to investigate the dynamic instability regions. The governing equations of motion involve periodic coefficients, which are not in the form of standard Mathieu-Hill equations. The result shows that the concentrated mass increases the dynamic stability of the spinning free-free beam subjected to a thrust.

  • PDF

Movable Nozzle Performance Analysis by Using ADAMS (ADAMS를 이용한 가동 노즐 성능 평가 기법)

  • Kim, Joung-Keun;Jang, Hong-Been
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.30-35
    • /
    • 2009
  • Effective-pivot effects on the thrust vector control performance of the flexible seal nozzle to be used to control the flight direction of missile were investigated by computer simulation. $2^3$-Design of experiment technique was applied and ADMAS was used for the surrogate technique. As a result, radial pivot position had more influence upon the nozzle actuating performance than axial pivot position. Connecting method of actuator was also important factor in determining effective-pivot effects on the thrust vector control performance of the flexible seal nozzle.

Performance Analysis based on Impller Inlet & Outlet Angle for Waterjet (워터제트의 임펠러 입구와 출구 각도에 따른 성능해석)

  • Kang, Min-Kyu;Park, Dong-Jin;Kang, Han-Bin;Lee, Seok-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.27-32
    • /
    • 2011
  • The purpose of this study was to suggest 10 kinds of case and perform Mixed-flow pump optimum design and performance analysis depending on the shape of the impeller for suitable to water jet propulsion system. H20 was applied to the material properties, to analysis conditions for water jet axial impeller 1000 rpm given analysis was performed. Interpretation for each case as a result of speed, pressure, flow rate, calculate the thrust at the Inlet Angle $30^{\circ}$ and Outlet Angle $30^{\circ}$ could see a persistence of optimal performance.

A Study on the life and reliability of helical gear system (헬리컬 기어장치의 수명 및 신뢰성에 관한 연구)

  • 김하수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.265-270
    • /
    • 1997
  • Helical gear system is utilized to transmit motion between parallel shafts. The axial thrust loads on the shafts are existed. On each of the support shafts, at least one of the bearings should be able to support the axial loads. The reliability and life analysis are based on the two-parameter Weibull distribution lives of the component gears and bearings. The computer calculates the system lives and dynamic capacities of the components and their system. The system life is defined as the life of the component or the helical gear system at an output torque at which the probability of survival is ninety percent.

  • PDF

Hydraulic Force and Impeller Evaluation of a Centrifugal Heart Pump

  • Timms, D.L;Tan, A.C.C;Pearcy, M-J;Mcneil, K;Galbraith, A
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.376-381
    • /
    • 2004
  • A rig was constructed to test the performance characteristics and compare the hydraulic forces exerted on a centrifugal type artificial heart impeller. A conventional shaft. seal and bearing system. while driven by a small electric motor. supported the impeller which was separated from the pump casing by a six degree of freedom force transducer (JR3 Ine). Radial (x. y) and axial (z) hydraulic forces were recorded and compared. At physiological operating conditions. the results indicate that the double entry/exit centrifugal pump encounters a smaller radial force and significantly reduced axial thrust. These experimental results are valuable in the design of a magnetic bearing system to suspend the impeller of a centrifugal artificial heart pump. This experimental technique may also be applied to evaluate the required capacity and predict the lifetime of contact bearings in marine pumps.