• 제목/요약/키워드: Axial Force Redistribution

검색결과 6건 처리시간 0.019초

Predictions of non-uniform tip clearance effects on the flow field in an axial compressor

  • Kang, Young-Seok;Kang, Shin-Hyoung
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.743-750
    • /
    • 2008
  • Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution 'seed' results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is involved when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes have an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume analysis of the circumferential momentum leads to well-known Alford's force. Alford's force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford's force at the high flow coefficient. Alford's force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang(2006).

  • PDF

시공단계에 따른 철근콘크리트 고층건물의 해석시스템 개발 (Analytical System Development for Reinforced Tall Buildings with Construction Sequence)

  • 이태규
    • 한국콘텐츠학회논문지
    • /
    • 제13권9호
    • /
    • pp.410-417
    • /
    • 2013
  • 시공단계에 따른 철근콘크리트 구조물의 장기변형 해석은 설계 및 시공에 있어서 매우 중요한 요소이다. 하지만 기존의 많은 해석적 연구들은 그 적용기법의 단순화로 인하여 실제 구조설계 및 시공에 대부분 반영되지 못하고 있다. 동바리와 기둥에서는 축력 재분배가 시간에 따라 계속적으로 변화되기 때문에 콘크리트 타설, 거푸집 제거, 동바리 재설치, 동바리 제거 및 이에 따른 추가하중의 작용과 같은 전반적인 시공단계를 그대로 적용하여 해석하는 것은 매우 중요한 요소이다. 따라서 본 논문에서는 이와 같은 시간에 따른 시공단계별 해석을 객체지향 알고리즘으로 개발하였다. 본 시스템에서는 입력모듈, DB 모듈, DB저장 모듈, 해석모듈 및 결과분석모듈로 구분하였으며, 각 모듈간의 연계는 visual c# 루틴으로 처리하였다. 또한 그래픽 인터페이스와 DB 테이블은 사용자 편의성을 고려하여 개발하였다.

Axial load detection in compressed steel beams using FBG-DSM sensors

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Lee, Zheng-Kuan;Tullini, Nerio
    • Smart Structures and Systems
    • /
    • 제21권1호
    • /
    • pp.53-64
    • /
    • 2018
  • Nondestructive testing methods are required to assess the condition of civil structures and formulate their maintenance programs. Axial force identification is required for several structural members of truss bridges, pipe racks, and space roof trusses. An accurate evaluation of in situ axial forces supports the safety assessment of the entire truss. A considerable redistribution of internal forces may indicate structural damage. In this paper, a novel compressive force identification method for prismatic members implemented using static deflections is applied to steel beams. The procedure uses the Euler-Bernoulli beam model and estimates the compressive load by using the measured displacement along the beam's length. Knowledge of flexural rigidity of the member under investigation is required. In this study, the deflected shape of a compressed steel beam is subjected to an additional vertical load that was short-term measured in several laboratory tests by using fiber Bragg grating-differential settlement measurement (FBG-DSM) sensors at specific cross sections along the beam's length. The accuracy of midspan deflections offered by the FBG-DSM sensors provided excellent force estimations. Compressive load detection accuracy can be improved if substantial second-order effects are induced in the tests. In conclusion, the proposed method can be successfully applied to steel beams with low slenderness under real conditions.

Numerical investigations of structure-soil-structure interaction on footing forces due to adjacent building

  • Shrish Chandrawanshi;Vivek Garg
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.477-487
    • /
    • 2024
  • The interaction between multiple structures through the supporting soil media, known as structure-soil-structure interaction (SSSI), has become an increasingly important issue due to rapid urbanization. There is a need to investigate the effect of SSSI on the structural response of buildings compared to non-interaction analysis (NIA) and soil-structure interaction (SSI) analysis. In the present study, two identical 4-bay×4-bay, three-story RCC buildings are modeled adjacent to each other with a soil domain beneath it to investigate the effect of SSSI on the forces experienced by footings under gravity and seismic load cases. The ANSYS software is used for modeling various non-interaction and interaction models which work on the principle of FEM. The results indicate that in most of the footings, the SSSI effect causes a significant redistribution of forces compared to SSI and NIA under both gravity and seismic load cases. The maximum interaction effect is observed on the footings that are closer to the adjacent building. The axial force, shear force and bending moment values on these footings show that SSI causes a significant increase in these values compared to non-interaction analysis but the presence of adjacent building relieves these forces significantly.

크리프와 건조수축을 고려한 철근콘크리트 기둥과 동바리의 축력 재분배 해석법

  • 김선영;이태규;김진근;이수곤
    • 콘크리트학회논문집
    • /
    • 제13권6호
    • /
    • pp.629-636
    • /
    • 2001
  • 최근 철근콘크리트 골조 구조물에 대한 장기변형 특성을 고려하여 고층건물의 설계 및 시공에 적용하려는 연구가 활발하게 진행되고 있다. 그러나 기존의 연구에서 고려하고 있는 시공단계는 reshoring을 고려하지 못하고 거푸집제거 및 shoring을 한 단계로 고려하기 때문에 동바리를 제거하기전의 초기재령에서 발생하는 변형을 고려하지 못한다. 본 연구에서는 동바리의 설치/제거를 포함한 실제적인 시공과정을 고려하여 거푸집의 강성, 동바리의 강성 그리고 시간에 따른 콘크리트의 강성의 변화에 따른 축력변화를 예측할 수 있는 2차원 골조해석 프로그램을 개발하였다. 예제해석결과 동바리의 축력이 시간에 따라서 감소한다. 또한, 동바리의 개수와 상관없이 기둥과 동바리와의 축력 재분배에 의해서 외측기둥에는 실제 설계 값보다 비탄성 하중이 작게 작용하고 내측 기둥에서는 크게 나타난다. 한편, 프로그램의 타당성을 검증하기 위하여 실제 철근콘크리트 골조 구조물을 타설-거푸집 제거-reshoring-동바리 제거-부가하중작용과 같은 일반적인 시공순서에 따라서 제작하였다. 실험결과 동바리를 제거하기 전에 기둥에 변형이 발생하며 동바리의 축력이 기둥에 분배되었다. 따라서 개발된 해석프로그램은 실험결과를 비교적 잘 예측하였다.

Effect of unequal spans on the collapse behavior of multi-story frames with reduced beam section connections

  • Zheng Tan;Wei-hui Zhong;Bao Meng;Li-min Tian;Yao Gao;Yu-hui Zheng;Hong-Chen Wang
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.107-122
    • /
    • 2024
  • Following an internal column failure, adjacent double-span beams above the failed column will play a critical role in the load transfer and internal force redistribution within the remaining structure, and the span-to-depth ratios of double-span beams significantly influence the structural resistance capacity against progressive collapse. Most existing studies have focused on the collapse-resistant performances of single-story symmetric structures, whereas limited published works are available on the collapse resistances of multi-story steel frames with unequal spans. To this end, in this study, numerical models based on shell elements were employed to investigate the structural behavior of multi-story steel frames with unequal spans. The simulation models were validated using the previous experimental results obtained for single- and two-story steel frames, and the load-displacement responses and internal force development of unequal-span three-story steel frames under three cases were comprehensively analyzed. In addition, the specific contributions of the different mechanism resistances of unequal-span, double-span beams of each story were separated quantitatively using the energy equilibrium theory, with an aim to gain a deeper level of understanding of the load-resistance mechanisms in the unequal-span steel frames. The results showed that the axial and flexural mechanism resistances were determined by the span ratio and linear stiffness ratio of double-span beams, respectively.