• Title/Summary/Keyword: Axial Fan with Centrifugal type

Search Result 5, Processing Time 0.02 seconds

The Study on Performance of an Axial Fan with Centrifugal type Blades in Duct flow (덕트 내 원심식 축류팬의 성능변화에 관한 연구)

  • Han, Jae-Oh;Lee, Soo-Young;Yu, Seung-Hun;Lee, Jai-Kwon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.213-216
    • /
    • 2006
  • This paper was a study about noise reduction through flow stabilization in duct using experimental method and numerical analysis at the same time. To determine the fan's type three kinds of fans(axial fan, centrifugal fan, and axial fan with centrifugal type blades) was examined to investigate the suitability for in-line duct. As a result, under the equal number of rotation 2000 RPM, performance of an axial fan with centrifugal type blades was the most superior by 55dBA at 4.3CMM among other fans. After this, analyzed the results of the numerical analysis to find out the optimum design of pitch angle such as $0^{\circ}$, $10^{\circ}$, $15^{\circ}$ and $20^{\circ}$. The intensity of turbulence was low when pitch angle was $15^{\circ}$ and air volume became peak by 5.08 CMM. It was observed that axis component of velocity increased gradually when pitch angle increased from $0^{\circ}$ to $20^{\circ}$, and embodied noise reduction and improvement of air flow rate through flow stabilization.

  • PDF

Study on Noise Reduction by Optimizations of In-line Duct Flow (덕트의 유로 최적화를 통한 소음저감 연구)

  • Han, Jae-Oh;Lee, Soo-Young;Mo, Jin-Yong;Lee, Jai-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.803-808
    • /
    • 2006
  • This paper was a study about noise reduction through flow stabilization in duel using experimental method and numerical analysis at the same time. To determine the fan's type three kinds of fans(axial fan, centrifugal fan, and axial fan with centrifugal type) was examined to investigate the suitability for duct. As a result, under the equal number of rotation 2000 RPM, performance of an axial fan with centrifugal type was the most superior by 55dBA at 4.3CMM among other fans. After this, analyzed the results of the numerical analysis to find out the optimum design of pitch angle such as $0^{\circ},\;10^{\circ},\;15^{\circ}\;and\;20^{\circ}$. The intensity of turbulence was low when pitch angle was $15^{\circ}$ and air volume became peak by 5.08 CMM. It was observed that axis component of velocity increased gradually when pitch angle increased from $0^{\circ}\;to\;20^{\circ}$. Finally, designed the shapes of D/S(Down Stream) in duct that agreed inlet angle($\delta$) of stationary blades with pitch angle($\beta$) of axial fan with centrifugal type and derived flow to duct medial, and changed the shape of motor-mount to reduce occurance of unstable vortex in tip of impeller, and embodied noise reduction and improvement of air flow rate through flow stabilization.

  • PDF

An Experimental Study on the Flow Characteristics of Axial Flow Fan with Centrifugal Sub-Blade (원심형 보조날개를 부착한 축류홴의 유동특성에 관한 실험적 연구)

  • Lee, Sukjong;Sung, Jaeyong;Lee, Myeong-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.3
    • /
    • pp.19-25
    • /
    • 2013
  • A new type axial flow fan with centrifugal sub-blades has been designed and fabricated in the present study. We investigated velocity and pressure distributions in downstream flow fields of the fan experimentally to detect the detailed flow characteristics of new axial flow fan and an existing axial flow fan. Two-dimensional velocity components were probed by applying a particle image velocimetry system and pressure distributions were measured by Pitot tube and micro-manometer. Our results show that the velocity and pressure distributions at the flow fields of the new fan are quite different from the existing fan, and that the centrifugal sub-blades in the new fan can improve the performance characteristics in view of kinetic energy.

A Numerical Investigation of Flow and Performance Characteristics of a Small Propeller Fan Using Viscous Flow Calculations

  • Oh, Keon-Je;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.386-394
    • /
    • 2002
  • The present work is aimed at investigating an unusual variation in flow and performance characteristics of a small propeller fan at low flow rates. A performance test of the fan showed dual performance characteristics, i.e., radial type characteristics at low flow rates and axial type at high flow rates. Dual performance characteristics of the fan are numerically investigated using viscous flow calculations. The Finite Volume Method is used to solve the continuity and Navier-Stokes equations in the flow domain around a fan. The performance parameters and the circumferentially averaged velocity components obtained from the calculations are compared with the experimental results. Numerical values of the performance parameters show good agreement with the measured values. The calculation simulates the steep variations of performance parameters at low flow rates and shows the difference in the flow structure between high and low flow rates. At a low flow coefficient of $\Phi$=0.2, the flow enters the fan in an axial direction and is discharged radially outward at its tip, which is much like the flow characteristics of a centrifugal fan. The centrifugal effect at low flow rates makes a significant difference in performance characteristics of the fan. As the inlet flow rate increases, flow around the fan changes into the mixed type at $\Phi$=0.24 and the axial discharge at $\Phi$=0.4.

Numerical analysis of turbulent flow around a small propeller fan operating at the inlet of open chamber (개방된 챔버 입구에서 작동하는 소형 프로펠러 팬 주위의 난류유동해석)

  • O, Geon-Je;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1586-1594
    • /
    • 1997
  • Performance characteristics of a small propeller fan are numerically investigated solving the continuity and Reynolds-averaged Navier-Stokes equations. The Reynolds stresses for turbulent transport are modelled using a k-.epsilon. turbulence model. The present numerical procedure is constructed using the Finite Volume Method with the SIMPLE algorithms. The performance parameters obtained from the calculations are compared with the measured values for the various flow rates. A performance test of the fan shows different characteristics between a radial type at small flow rates and an axial type at large flow rates. Comparisons between the predictions and the measurements show that the predicted results are in good agreement with the measured values and reasonably reproduce the sharp variations of the power and head coefficient around a flow coefficient .PHI.=0.3. These comparisons indicate that the present numerical method is capable of resolving the performance characteristics with reasonable accuracy. At low flow rates, it is found that the flow enters the fan in an axial direction and is discharged radially outward at the tip which happens in the centrifugal fan. The centrifugal effect makes a significant difference in the characteristics of a fan at the low and high values of flow coefficient.