• 제목/요약/키워드: Axial Collapse

검색결과 176건 처리시간 0.206초

Experimental and numerical investigation of expanded metal tube absorber under axial impact loading

  • Nouri, M. Damghani;Hatami, H.;Jahromi, A. Ghodsbin
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1245-1266
    • /
    • 2015
  • In this research, the cylindrical absorber made of expanded metal sheets under impact loading has been examined. Expanded metal sheets due to their low weight, effective collapse mechanism has a high energy absorption capacity. Two types of absorbers with different cells angle were examined. First, the absorber with cell angle ${\alpha}=0$ and then the absorber with angle cell ${\alpha}=90$. Experimental Study is done by drop Hammer device and numerical investigation is done by finite element of ABAQUS software. The output of device is acceleration-time Diagram which is shown by Accelerometer that is located on the picky mass. Also the output of ABAQUS software is shown by force-displacement diagram. In this research, the numerical and experimental study of the collapse type, force-displacement diagrams and effective parameters has been investigated. Similarly, the comparison between numerical and experimental results has been observed that these results are matched well with each other. From the obtained results it was observed that the absorber with cell angle ${\alpha}=0$, have symmetric collapse and had high energy absorption capacity but the absorber with cell angle ${\alpha}=90$, had global buckling and the energy absorption value was not suitable.

Nonlinear dynamic analysis of a RC bridge subjected to seismic loading

  • Nanclares, German;Ambrosini, Daniel;Curadelli, Oscar;Domizio, Martin
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.765-779
    • /
    • 2020
  • Collapse of bridges in recent earthquakes demonstrates the need to deepen the understanding of the behaviour of these structures against seismic actions. This paper presents a highly detailed numerical model of an actual bridge subjected to extreme seismic action which results in its collapse. Normally, nonlinear numerical models have high difficulties to achieve convergence when reinforced concrete is intended to be represented. The main objective of this work is to determine the efficiency of different passive control strategies to prevent the structural collapse of an existing bridge. Metallic dampers and seismic isolation by decoupling the mass were evaluated. The response is evaluated not only in terms of reduction of displacements, but also in increasing of shear force and axial force in key elements, which can be a negative characteristic of the systems studied. It can be concluded that the use of a metallic damper significantly reduces the horizontal displacements and ensures the integrity of the structure from extreme seismic actions. Moreover, the isolation of the deck, which in principle seems to be the most effective solution to protect existing bridges, proves inadequate for the case analysed due to its dynamic characteristics and its particular geometry and an unpredictable type of axial pounding in the columns. This unexpected effect on the isolation system would have been impossible to identify with simplified models.

경량화용 혼성 알루미늄 CFRP 사각튜브의 축 압궤특성 (Axial Collapse Characteristics of Combined Aluminum CFRP Square Tubes for Light-Weight)

  • 이길성;차천석;정진오;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.110-113
    • /
    • 2004
  • Aluminum and CFRP tube is light-weight material representatively but collapse mechanism is different under axial loading. Aluminum tube absorbs energy by stable plastic deformation under axialloading. While CFRP(Carbon Fiber Reinforced Plastics)tube absorb synergy by unstable brittle failure but its specific strength and stiffness is higher than that of aluminum tube. In this study, for complement of detect and synergy effect by combination with the advantages of each member, the axialcollapsetests were performed for combined aluminum CFRP tubes which are composed of aluminum tubes wrapped with CFRP out side aluminum square tubes. Collapsecharacteristics were analyzed for combined square tubes which have different CFRP orientation angle and thickness. Test results were compared with that of aluminum tubes and CFRP tubes.

  • PDF

차체구조용 박육부재의 압궤특성에 관한 연구 (A Study on the Collapse Characteristics of Thin-walled Structural Members for Automobiles Under Axial Compression Load)

  • 김정호;임성훈;양인영
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.1-14
    • /
    • 1997
  • In this paper, collapse test of thin-walled structural member widely used for automobiles is carried out under static compression load to observe the effects of cross- sectional shape and material on the energy absorbing capacity in the viewpoint of cras- hworthiness. Specimens tested consist of two sorts(Aluminium, CFRP) and configur- ations(Circular, Square) with variation in thickness. Also, comparisons of Al circular and square specimens are made to find the influence of difference in shape on the energy absorbing capability according as the thickness of specimen varies.

  • PDF

국부좌굴을 동반하는 원형강관 부재의 복원력 특성 (The Analysis of Local Buckling Behavior for Steel Circular Tubes)

  • 이상주;이동우;한상을
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.73-80
    • /
    • 2006
  • In this paper, we work with steel circular tubes and propose analysis model which can consider local buckling that it has an effect on failure of steel structures and induce the relation between loading and deformation. First of all, in respect to axial symmetry local buckling, which is simplest case, elasto-plastic behavior acting only axial loads is object. Therefore, it suggests analysis model for axial symmetry local buckling. And that is explainable the process from increasing internal force to decreasing passing maximum internal force. Besides, we induce the relation between the axial force and axial deformation.

  • PDF

박판사각튜브의 압괴 특성 (Crush Characteristics of Thin-walled Rectangular Tube)

  • 이종선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.261-266
    • /
    • 1998
  • In this study, crush characteristics of thin-walled rectangular tube is investigated. The stiffness of the element is obtained from analytical moment-rotation relationship and approximated load-deflection relationship of thin-walled rectangular tube. A computer program is developed for the large deformation analysis of frame. An incremental displacement method is used in the program and at each incremental stage, the stiffness matrix of the total structure is checked with the state each element for bending and compression.

  • PDF

알루미늄 압출재의 붕괴 특성 및 축소모형을 이용한 충격 해석 기법 연구 (Collapse Characteristics of Aluminum Extruded Sections and Crash Analysis Using Half Scale Model)

  • 김범진;허승진;구정서;송달호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.229-234
    • /
    • 2001
  • The aluminum extruded sections are used to the light construction of the high speed rail vehicle structures. However, the research works on the crashworthy design of aluminum extruded sections are not published sufficiently. In this paper, the collapse characteristics of aluminum extruded sections are investigated by crush test and simulation. The scale model studies are also performed to predict the impact energy absorption characteristics of full scale model through axial crush test and simulation.

  • PDF

FEM에 의한 점용접된 이중모자형 단면부재의 축방향 압궤특성에 관한 연구 (A Study on Axial Collapse Characteristics of Spot Welded Double-Hat Shaped Section Members by FEM)

  • 차천석;김영남;양인영
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.120-126
    • /
    • 2001
  • The widely used spot welded section members of vehicles are structures which absorb most of the energy in a front-end collision. In front-end collision, sufficiently absorbed in the front parts, the impact energy does not reach the passengers. Simultaneously, the frame gets less damaged. This structures have to be very stiff, but collapse progressively to absorb the kinetic energy as expected. In the view of stiffness, the double-hat shaped section member is stiffer than the hat shaped section member. In progress of collapse, the hat shaped section member is collapsing progressively, but the double-hat shaped section member does not due to stiffness. An analysis on the hat shaped section member was previously completed. This paper concerns the collapse characteristic of the double-hat shaped section member. In the program system presented in this study, an explicit finite element code, LS-DYNA3D is adopted for simulating complicate collapse behavior of double hat shaped section members with respect to spot weld pitches. And comparing with the results from the quasi-static and impact experiment, the simulation has been verified.

  • PDF

Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings

  • Farsangi, E. Noroozinejad;Yang, T.Y.;Tasnimi, A.A.
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.653-669
    • /
    • 2016
  • Recent earthquakes worldwide show that a significant portion of the earthquake shaking happens in the vertical direction. This phenomenon has raised significant interests to consider the vertical ground motion during the seismic design and assessment of the structures. Strong vertical ground motions can alter the axial forces in the columns, which might affect the shear capacity of reinforced concrete (RC) members. This is particularly important for non-ductile RC frames, which are very vulnerable to earthquake-induced collapse. This paper presents the detailed nonlinear dynamic analysis to quantify the collapse risk of non-ductile RC frame structures with varying heights. An array of non-ductile RC frame architype buildings located in Los Angeles, California were designed according to the 1967 uniform building code. The seismic responses of the architype buildings subjected to concurrent horizontal and vertical ground motions were analyzed. A comprehensive array of ground motions was selected from the PEER NGA-WEST2 and Iran Strong Motions Network database. Detailed nonlinear dynamic analyses were performed to quantify the collapse fragility curves and collapse margin ratios (CMRs) of the architype buildings. The results show that the vertical ground motions have significant impact on both the local and global responses of non-ductile RC moment frames. Hence, it is crucial to include the combined vertical and horizontal shaking during the seismic design and assessment of non-ductile RC moment frames.

최적 충격특성에 갖는 차체구조용 점용접 박육단면부재의 개발 -충격속도변화에 따른 압궤특성을 중심으로- (Development of Vehicle Members with Spot Welded Thin-wall Section for Optimum Impart Characteristic -Based on Collapse Characteristics on the Varied Impact Velocities-)

  • 양인영;차천석;강종엽
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1131-1138
    • /
    • 2001
  • This paper concerns the crashworthiness of the widely used vehicle structure, the spot welded hat and double hat shaped section members, which are excellent on the point of the energy absorbing capacity and low production cost. The target of this paper is to analyze the energy absorption capacity of the structure against the front-end collision, and to obtain useful information for designing stage. Changing the spot weld pitches on the flanges, the hat and double hat shaped section members were tested on the axial collapse loads in impact velocities of 4.72m/sec, 6.54m/sec, 7.19m/sec and 7.27m/sec. To efficiently review the collapse characteristics of these sections, the simulation have been carried out using explicit FEM package, LS-DYNA3D. The solutions are compared with results from the impact collapse experiments.