• Title/Summary/Keyword: Axial Collapse

Search Result 177, Processing Time 0.02 seconds

Collapse Analysis of Ultimate Strength for the Aluminium Stiffened Plate subjected to Compressive Load (알루미늄 보강판의 압축 최종강도 붕괴 해석)

  • Park, Joo-Shin;Ko, Jae-Yong;Kim, Yun-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.825-831
    • /
    • 2007
  • The use of high-strength aluminum alloys for ship and offshore structure generally has many benefits compared to the structural steels. These materials are used widely in a variety of fields, especially in the hull and deck of high speed craft, box-girder of bridges, deck and side plates of offshore structure. The structural weight can be reduced using these aluminum structure, which can enable high speed The characteristics of stress-strain relationship of aluminum structure are fairly different from the steel one, because of the influence of Heat Affected Zone(HAZ) by the welding processing. The HAZ of aluminum is much wider than that of steel with its high heat conductivity. In this paper, the ultimate strength characteristics of aluminum stiffened panel subjected to axial loading, such as the relationship between extent of HAZ and the behavior of buckling/ultimate strength, are investigated through the Finite Element Analysis with varying its range.

Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading

  • Abedini, Masoud;Zhang, Chunwei
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.441-461
    • /
    • 2021
  • Reinforced concrete (RC) columns are crucial in building structures and they are of higher vulnerability to terrorist threat than any other structural elements. Thus it is of great interest and necessity to achieve a comprehensive understanding of the possible responses of RC columns when exposed to high intensive blast loads. The primary objective of this study is to derive analytical formulas to assess vulnerability of RC columns using an advanced numerical modelling approach. This investigation is necessary as the effect of blast loads would be minimal to the RC structure if the explosive charge is located at the safe standoff distance from the main columns in the building and therefore minimizes the chance of disastrous collapse of the RC columns. In the current research, finite element model is developed for RC columns using LS-DYNA program that includes a comprehensive discussion of the material models, element formulation, boundary condition and loading methods. Numerical model is validated to aid in the study of RC column testing against the explosion field test results. Residual capacity of RC column is selected as damage criteria. Intensive investigations using Arbitrary Lagrangian Eulerian (ALE) methodology are then implemented to evaluate the influence of scaled distance, column dimension, concrete and steel reinforcement properties and axial load index on the vulnerability of RC columns. The generated empirical formulae can be used by the designers to predict a damage degree of new column design when consider explosive loads. With an extensive knowledge on the vulnerability assessment of RC structures under blast explosion, advancement to the convention design of structural elements can be achieved to improve the column survivability, while reducing the lethality of explosive attack and in turn providing a safer environment for the public.

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

Cumulative damage in RC frame buildings - The 2017 Mexico earthquake case

  • Leonardo M. Massone;Diego Aceituno;Julian Carrillo
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.13-36
    • /
    • 2023
  • The Puebla-Morelos Earthquake (Mw 7.1) occurred in Mexico in 2017 causing 44 buildings to collapse in Mexico City. This work evaluates the non-linear response of a 6-story reinforced concrete (RC) frame prototype model with masonry infill walls on upper floors. The prototype model was designed using provisions prescribed before 1985 and was subjected to seismic excitations recorded during the earthquakes of 1985 and 2017 in different places in Mexico City. The building response was assessed through a damage index (DI) that considers low-cycle fatigue of the steel reinforcement in columns of the first floor, where the steel was modeled including buckling as was observed in cases after the 2017 earthquake. Isocurves were generated with 72 seismic records in Mexico City representing the level of iso-demand on the structure. These isocurves were compared with the location of 16 collapsed (first-floor column failure) building cases consistent with the prototype model. The isocurves for a value greater than 1 demarcate the location where fatigue failure was expected, which is consistent with the location of 2 of the 16 cases studied. However, a slight increase in axial load (5%) or decrease in column cross-section (5%) had a significant detrimental effect on the cumulated damage, increasing the intensity of the isocurves and achieving congruence with 9 of the 16 cases, and having the other 7 cases less than 2 km away. Including column special detailing (tight stirrup spacing and confined concrete) was the variable with the greatest impact to control the cumulated damage, which was consistent with the absence of severe damage in buildings built in the 70s and 80s.

A Study on the Structure Behavior of Dry-assembled Wall with Concrete Blocks subjected to Cyclic Lateral Load (콘크리트블록으로 건식조립된 벽체의 수평반복하중에 대한 구조거동 연구)

  • Lee, Joong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.440-447
    • /
    • 2020
  • Masonry structures are used as bearing walls in small buildings, but they are generally considered non-bearing walls. They are used as partition walls that divide the interior spaces of the frame structures of buildings. In addition, wetting techniques that use mortar as an adhesive between blocks or bricks in construction are vulnerable to climatic conditions, especially cracks in mortar, which can cause conduction collapse of the walls in seismic loading. The purpose of this research was to propose a dry concrete block construction method that complements the weak axial shear stiffness and improves the weakness of the wet construction method as well as to investigate its structural behavior. In this study, the material properties of concrete blocks were examined, and the seismic performance of the proposed dry assembly structure was verified by structural behavior tests on horizontal cyclic loads. First, in these study results, concrete blocks can be applied to the dry block construction method instead of wet construction methods because they secure more than C-type blocks in KS regulations. Second, the structural performance of the wall against a horizontal cyclic load indicates that the resisting force of the assembly block wall is increased by increasing the horizontal length of the wall, forming several diagonal cracks. Finally, the proposed dry block wall structure requires a seismic performance assessment considering that the ratio of the shape of the wall by height and length is considered a major influence variable on the structural behavior under a horizontal load.

A Grounded Theory Approach on the Experience of Foster Care Child's Biological Parents (가정위탁아동 친부모의 경험에 대한 근거이론접근)

  • Kim, Jin-Sook;Lee, Keun-Moo
    • Korean Journal of Social Welfare Studies
    • /
    • v.42 no.3
    • /
    • pp.85-119
    • /
    • 2011
  • This Study was to explore the experience of foster care child's biological parents and proposed the practical discuss and method for support their returning home. We approached grounded theory to subject. Twenty biological parent's of foster child participated this research. The Data were collected by in depth-interview and documents. The authors analyzed the data according to frame that proposed Strauss and Corbin(1998). The results as follows: In open coding 143 concepts, 34 subcategory, 13 category. In axial coding the causal conditions were 「self-devaluation」, 「self-stigma」, 「social prejudice」. and the phenomenon were 「life as surplus being」, 「revolving around the world」, and the contextual conditions were 「collapse of life base」, 「rustical fatalism」. The intervention conditions were 「operation of support system」, 「instinct of maternity」. The action/interception strategy were 「closing of single eye」, 「pussling of scattered piece」. The consequence were 「fixations of abandonment」. 「resoaring to the world」 The authors proposed the core category as 「go over the wall of world burdening liabilities of being」. The authors classified patricians life type as 「challenging type」, 「status quo type」, 「escaping type」, Finally, we proposed the practical method for support restoring family the world」, foster care child's biological parents.

Flattening in the Anteroposterior Direction of the Terminal Ileum or Sigmoid Colon Lying Across the Psoas Muscle on Magnetic Resonance Enterography in Patients with Crohn's Disease

  • Dong Wook Kim;Seong Ho Park;Jong Seok Lee;Hyun Jin Kim;Ah Young Kim;Byong Duk Ye;Suk-Kyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1640-1649
    • /
    • 2021
  • Objective: Flattening in the anteroposterior direction (AP flattening) of the terminal ileum (TI) or sigmoid colon (SC) lying across the psoas muscle, on magnetic resonance enterography (MRE), might mimic bowel inflammation in the coronal view. This study investigated the prevalence of AP flattening and the factors associated with its development. Materials and Methods: A total of 364 surgery-naïve patients with Crohn's disease (CD) who had undergone MRE were retrospectively reviewed. AP flattening was defined as a luminal collapse in the anteroposterior direction, with a bowel width in the axial plane < 1/4 of the normal diameter without reduction of bowel width in coronal images. The prevalence of AP flattening of the TI and SC on MRE in patients with bowel segments lying across the psoas muscle was determined. We further compared the rate of AP flattening between MRE and computed tomography enterography (CTE) in a subcohort of patients with prior CTE. The factors associated with AP flattening were analyzed using multivariable logistic regression in a subcohort of patients with endoscopic findings of TI. Results: Three hundred and twenty-two and 363 patients, respectively, had TI and SC lying across the psoas muscle. The prevalence of AP flattening on MRE was 7.5% (24/322) in TI and 5.2% (19/363) in SC. The prevalences were significantly higher on MRE than on CTE in both the TI (7.3% [12/164] vs. 0.6% [1/164]; p = 0.003) and SC (5.8% [11/190] vs. 1.6% [3/190]; p = 0.039). AP flattening of the TI was independently and strongly associated with the absence of CD inflammation on endoscopy, with an adjusted odds ratio of 0.066 (p = 0.003) for the presence versus the absence (reference) of inflammation. Conclusion: AP flattening of the TI or SC lying across the psoas muscle was uncommon and predominantly observed on MRE of the bowel without CD inflammation.