• Title/Summary/Keyword: Avrami kinetics

Search Result 47, Processing Time 0.022 seconds

Modeling of PhaseTransformation Kinetics in the CGHAZ Considering Prior Austenite Grain Size (오스테나이트 결정립 크기를 고려한 CGHAZ에서의 상변태 거동 예측)

  • 이찬우;엄상호;이경종;이창희
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.55-62
    • /
    • 2000
  • A metallurgical model for the phase transformation kinetics at Coarsened Grain Heat Affected Zone(CGHAZ) on the basis of Johnson-Mehl-Avrami equation(JMA equation) was proposed. In this model, the effect of prior austenite grain size on the transformation and the morphological changes of ferrite were considered. Isothermal dilatometer tests were performed to determine the effect of prior austenite grain size (AGS) on the austenite decomposition to ferrite and pearlite in a plain carbon steel. By comparing the calculated volume fraction with measured data, the reliability of the developed model was discussed.

  • PDF

Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: II. Prediction Model for the Austenitization Kinetics and Austenite Grain Size Considering the Effect of Ferrite Grain Size in Fe-C-Mn Steel (용접 열영향부 미세조직 및 재질예측 모델링: II. Fe-C-Mn 강에서 페라이트 결정립크기의 영향을 고려한 Austenitization kinetics 및 오스테나이트 결정립크기 예측모델)

  • Ryu, Jong-Geun;Moon, Joon-Oh;Lee, Chang-Hee;Uhm, Sang-Ho;Lee, Jong-Bong;Chang, Woong-Sung
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.77-87
    • /
    • 2006
  • Considering ferrite grain size in the base metal, the prediction model for $A_{c3}$ temperature and prior austenite grain size at just above $A_{c3}$ temperature was proposed. In order to predict $A_{c3}$ temperature, the Avrami equation was modified with the variation of ferrite grain size, and its kinetic parameters were measured from non-isothermal data during continuous heating. From calculation using a proposed model, $A_{c3}$ temperatures increased with increasing ferrite grain size and heating rate. Meanwhile, by converting the phase transformation kinetic model that predicts the ferrite grain size from austenite grain size during cooling, a prediction model for prior austenite grain size at just above the $A_{c3}$ temperature during heating was developed.

Rheological properties and crystallization kinetics of polypropylene block copolymer with repeated extrusion

  • Sung Yu-taek;Seo Won Jin;Kim Jong Sung;Kim Woo Nyon;Kwak Dong-Hwan;Hwang Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.21-25
    • /
    • 2005
  • Rheological properties and crystallization kinetics of the polypropylene (PP) block copolymer and recycled PP block copolymer were studied by advanced rheometric expansion system (ARES), differential scanning calorimetry (DSC), and optical microscopy. In the study of the dynamic rheology, it is observed that the storage modulus and loss modulus for the PP block copolymer and recycled PP block copolymer did not change with frequency. In the study of the effect of the repeated extrusion on the crystallization rate, half crystallization time of the PP samples was increased with the number of repeated extrusion in isothermal crystallization temperature ($T_c$). From the isothermal crystallization kinetics study, the crystallization rate was decreased with the increase of the number of repeated extrusion. Also, from the result of Avrami plot, the overall crystallization rate constant (K) was decreased with the increase of the number of the repeated extrusion. From the study of the optical microscopy, the size of the spherulite of the PP samples did not change significantly with the number of repeated extrusion. However, it was clearly observed that the number of the spherulite growth sites was decreased with the number of repeated extrusion. From the results of the crystallization rate, isothermal crystallization kinetics, Avrami plots, and optical microscopy, it is suggested that the crystallization rate of the PP block copolymer is decreased with the increase of the number of repeated extrusion.

Behavioral Current-Voltage Model with Intermediate States for Unipolar Resistive Memories

  • Kim, Young Su;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.539-545
    • /
    • 2013
  • In this paper, a behavioral current-voltage model with intermediate states is proposed for analog applications of unipolar resistive memories, where intermediate resistance values between SET and RESET state are used to store analog data. In this model, SET and RESET behaviors are unified into one equation by the blending function and the percentage volume fraction of each region is modeled by the Johnson-Mehl-Avrami (JMA) equation that can describe the time-dependent phase transformation of unipolar memory. The proposed model is verified by the measured results of $TiO_2$ unipolar memory and tested by the SPECTRE circuit simulation with CMOS read and write circuits for unipolar resistive memories. With the proposed model, we also show that the behavioral model that combines the blending equation and JMA kinetics can universally describe not only unipolar memories but also bipolar ones. This universal behavioral model can be useful in practical applications, where various kinds of both unipolar and bipolar memories are being intensively studied, regardless of polarity of resistive memories.

Crystallization Behavior and Kinetics of Cu-Zr-Al-Be Bulk Metallic Glass (Cu-Zr-Al-Be 비정질합금의 결정화거동 및 속도론)

  • Kim, Yu-Chan;Fleury, Eric;Seok, Hyun-Kwang;Cha, Pil-Ryung;Lee, Jin-Kyu;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.338-344
    • /
    • 2008
  • The crystallization kinetics of the $Cu_{43}Zr_{43}Al_7Be_7$ bulk metallic glass were studied by differential scanning calorimetry(DSC) in the continuous heating and isothermal annealing modes. Only one major peak could be detected on the DSC traces of $Cu_{43}Zr_{43}Al_7Be_7$ bulk amorphous alloy, and the activation energy for crystallization corresponding to the peak determined by the Kissinger method was resulted of 239 kJ/mol. The isothermal kinetic, analyzed by the Johnson-Mehl-Avrami equation yielded values for the Avrami exponents in the range 1.69 to 2.37, which implied a crystallization governed by a three-dimensioned growth. Primary phases were essentially the cubic structure CuZr together with the $Cu_{10}Zr_7$ phase. At higher temperature, the CuZr disappeared while the $Cu_{10}Zr_7$ became predominant. After long term annealing at 731 K, the phases were $Cu_{10}Zr_7$, $Cu_2ZrAl$ and $Al_3Zr_5$.

CRYSTALLIZATION KINETICS OF Fe-Si-B-Cu-Nb AMORPHOUS RIBBONS

  • Zhou, S.X.;Ulvensoen, J.H.;Hoier, R.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.511-514
    • /
    • 1995
  • The crystallization kinetics of $Fe_{73.5}Si_{13.5}B_{9}Cu_{1}Nb_{3}$ amorphous alloy has been investigated using differential scanning calorimetry (DSC). The crystallization process had two stages, i.e. precipitation of the $\alpha$-Fe(Si) solid solution and the tetragonal borides. The isothermal transformation data of the amorphous alloy has been fitted successfully to the generalized Johnson-Mehl-Avrami equation. The mean time exponent, n, obtained is close to 2.5. The value of n=2.5 may be interpreted as being due to a diffusion-controlled transformation process with a constant nucleation rate, one likely transformation mode for the crystallization of metallic amorphous alloys. The activation energy of the overall crystallization process deduced from the time to 50% crystallization are about 81 kcal/mole. The value is of the same order as those estimated from viscous flow.

  • PDF

A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics (플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰)

  • Kim, Se Hyun;Park, Keun Hyeong;Lee, Eun Been;Yu, Geun Taek;Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.330-342
    • /
    • 2020
  • Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.

Study on the Non-isothermal Crystallization Kinetics of Branched Polypropylene (분지형 폴리프로필렌의 비등온결정화 거동 연구)

  • Yoon, Kyung-Hwa;Shin, Dong-Yup;Kim, Youn-Cheol
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.245-250
    • /
    • 2012
  • Branched polypropylenes (PP) with long chain branch were prepared by solid state reaction with three different branching agent of 0.3 wt% content. The chemical structures, non-isothermal crystallization behavior and complex viscosity of the branched PP were investigated by FTIR, DSC, optical microscope, and dynamic rheological measurement. The chemical structure of the branched PP was confirmed by the existence of =C-H stretching peak of the branching agent at 3100 $cm^{-1}$. There was no distinct change in melting temperature in case of PP-D-0-3 and PP-F-0-3, but PP-H-0-3 indicated a decrease in melting temperature. The decrease in melting temperature was interpreted by the fact that the degradation reaction of PP was more dominant than branched reaction, and confirmed by a decrease in complex viscosity. The non-isothermal crystallization behavior of the branched PP was analyzed using by Avrami equation. The Avrami exponent of PP was 3, and the values of the branched PP with DVB and FS were below 3. The activation energy of PP calculated by Kissinger method was 25 kJ/mol, and there were no big difference in activation energies of the branched PPs compared to PP.

Precipitation Process in Cu-0.2%Cr-0.05%Zr Alloy Studied by the Electrical Resistivity Measurements (전기저항 측정에 의한 Cu-0.2%Cr-0.05%Zr 합금의 시효석출 거동)

  • Koo, B.H.;Lee, C.G.;Kim, C.J.;Bae, D.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.312-317
    • /
    • 2005
  • The precipitation process in Cu-0.2 wt.%Cr-0.05 wt.%Zr alloys has been studied by electrical electrical resistivity measurements. The kinetics of precipitation could be well described by Johnson-Mehl-Avrami equation, $f(t)=1-\exp(-kt^n)$. The values of n were found to be in the range of 0.36~0.42 at first stage and 1.3~1.6 at second stage. The activation energy was determined by cross-cut method and was 80~89 kJ/mol. The value is similar to the energy for the migration of either a vacancy or a vacancy-solute complex through the lattice.