• Title/Summary/Keyword: Avionics Cooling

Search Result 4, Processing Time 0.018 seconds

Performance Test and Evaluation of ACM for Fighter's External POD (전투기 외장 포드용 ACM의 성능 시험평가)

  • Paek, Seung-Yun;Seo, Ja-Won;Song, Deok-Hee;Kim, Kyeong-Su;Hong, Jae-Pyo;Park, Sung-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.527-530
    • /
    • 2010
  • A performance test of an air cycle machine with an air to air heat exchanger was performed. The air cycle machine designed for avionics cooling in a fighter's external pod is a small turbo machine operated on the reverse Brayton air cycle driven by captured ram air which is the source of driving energy and it can be used as cooling fluid going through electronics in the pod during the flight. The air to air heat exchanger was also used to avoid moisture for avionics. The performance test have verified that the developed ACM and heat exchanger meet the design requirements.

  • PDF

A Stress Analysis for Pressure Vessel to Prevent Spontaneous Ignition of Coal Stockpile (저탄장 자연발화 방지를 위한 압력용기의 응력 해석)

  • Kim, Young In;Kim, Seung Hun;Jie, Min-Seok;Yeum, Chan Sub;Choi, Won Hyuck
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.205-212
    • /
    • 2018
  • Spontaneous ignition is not only severe economic damage but also a typical plant damage caused by harmful gases generated during the fire. Because coal is porous, it causes oxygen to be absorbed in the amount of oxygen per unit weight of oxygen, resulting in low humidity and low thermal conductivity. The cause and effect of spontaneous ignition are very complex, so it is difficult to prevent it beforehand and once it is difficult to digest it, it is difficult to digest it. This study examines structural safety by conducting a structural analysis of the cooling ball system to prevent spontaneous combustion of coal stockpile plants and external pressures.

Influence of fin partitioning of a Rayeigh-Bénard cavity at low Rayleigh numbers

  • Zilic, Adis;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.411-430
    • /
    • 2018
  • This computational study examines the augmentation of classic 2-D Rayleigh-$B{\acute{e}}nard$ convection by the addition of periodically-spaced transverse fins. The fins are attached to the heated base of the cavity and serve to partition the cavity into 'units' with different aspect ratios. The respective impacts upon heat transfer of the fin configuration parameters - including spacing, height, thickness and thermal conductivity - are systematically examined through numerical simulations for a range of laminar Rayleigh numbers (0 < Ra < $2{\times}10^5$) and reported in terms of an average Nusselt number. The selection of the low Rayleigh number regime is linked to likely scenarios within aerospace applications (e.g. avionics cooling) where the cavity length scale and/or gravitational acceleration is small. The net heat transfer augmentation is found to result from a combination of competing fin effects, most of which are hydrodynamic in nature. Heat transfer enhancement of up to $1.2{\times}$ that for a Rayleigh-$B{\acute{e}}nard$ cavity without fins was found to occur under favorable fin configurations. Such configurations are generally characterized by short, thin fins with half-spacings somewhat less than the convection cell diameter from classic Rayleigh-$B{\acute{e}}nard$ theory. In contrast, for unfavorable configurations, it is found that the introduction of fins can result in a significant reduction in the heat transfer performance.

Thermo-Hydraulic Characteristics of Two-Dimensional Wavy Channels with Different Shape Parameters (2차원 파형 채널의 형상변화에 따른 열유동 특성)

  • Kim, Ki-Wan;Kim, Sun-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Two-dimensional laminar numerical analyses were carried out for investigating the thermo-hydraulic characteristics of wavy channels with different shape parameters ($0.5{\leq}{\in}{\leq}1.5$, $0.1{\leq}{\gamma}{\leq}0.4$). PAO (polyalphaolefin), which is used for electronics cooling, is considered as the working fluid. In addition, constant properties, periodically developed flow, and uniform channel wall temperature conditions are assumed. Streamline and temperature fields, isothermal Fanning friction factors, and Colburn factors are presented for different Reynolds numbers in the laminar region ($1{\leq}Re{\leq}1000$). The results show that heat transfer is enhanced when the channel corrugation ratio (${\gamma}$) is large and channel spacing ratio (${\in}$) is small in the low Reynolds number region (Re < 50) and when ${\in}$ and ${\gamma}$ are large in the high Reynolds number region ($Re{\geq}50$).