• Title/Summary/Keyword: Avionics

Search Result 546, Processing Time 0.026 seconds

Influence of fin partitioning of a Rayeigh-Bénard cavity at low Rayleigh numbers

  • Zilic, Adis;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.411-430
    • /
    • 2018
  • This computational study examines the augmentation of classic 2-D Rayleigh-$B{\acute{e}}nard$ convection by the addition of periodically-spaced transverse fins. The fins are attached to the heated base of the cavity and serve to partition the cavity into 'units' with different aspect ratios. The respective impacts upon heat transfer of the fin configuration parameters - including spacing, height, thickness and thermal conductivity - are systematically examined through numerical simulations for a range of laminar Rayleigh numbers (0 < Ra < $2{\times}10^5$) and reported in terms of an average Nusselt number. The selection of the low Rayleigh number regime is linked to likely scenarios within aerospace applications (e.g. avionics cooling) where the cavity length scale and/or gravitational acceleration is small. The net heat transfer augmentation is found to result from a combination of competing fin effects, most of which are hydrodynamic in nature. Heat transfer enhancement of up to $1.2{\times}$ that for a Rayleigh-$B{\acute{e}}nard$ cavity without fins was found to occur under favorable fin configurations. Such configurations are generally characterized by short, thin fins with half-spacings somewhat less than the convection cell diameter from classic Rayleigh-$B{\acute{e}}nard$ theory. In contrast, for unfavorable configurations, it is found that the introduction of fins can result in a significant reduction in the heat transfer performance.

Comparison of Commercial and Military Electromagnetic Compatibility Test Requirements (항공전자장비에 대한 전자기 적합성 평가기술 분석)

  • Han, Sang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.222-229
    • /
    • 2007
  • Environmental tests should be carried out to show that design performance is in an operational condition in an actual operational environment to assure maintainability and reliability. Aero-products electromagnetic compatibility tests are performed mainly for the individual parts and Specifications MIL-STD-461E and RTCA DO-160E are developed for the military and commercial parts tests respectively. The MIL-STD-461E which is a military environmental test standard is targeting all munitions and that user can apply by selecting applicable requirements from this specification. On the other hand, requirements are applied exclusively for the Avionics Equipments in commercial test standard.

  • PDF

R&D Trend of Airplane Health and Usage Monitoring System (항공기용 실시간 안전진단시스템 (HUMS) 연구개발 동향)

  • Song, Jae-Hoon;Lee, Hye-Won;Park, Hoon;Suk, Jong-Nak;Choi, Sun-Woo;Lee, Jang-Yeon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.105-112
    • /
    • 2010
  • Aircraft accidents are characterized by substantial and extensive damage: the destruction of hulls and the fatalities of passengers. Health and Usage Monitoring Systems (HUMSs) are being developed as a technological approach to prevent the aircraft accident. In Korea, a project to develop HUMS for small airplane is being executed by funding of by Ministry of Land, Transport and Maritime Affairs. In this paper, global R&D trends of HUMS to prevent aircraft accident are described. An on-going Korean HUMS project is also explained, especially for system configuration, functionality and expected achievement.

  • PDF

A Study on the Improvement of the Domestic Maintenance Capability Development System of Military for Overseas Maintenance Items through the Case Study of Intermittent Failure of an Avionics (항전계통 간헐결함 사례 분석을 통한 군의 해외 정비품 국내정비능력 개발제도 개선방안 고찰)

  • Lee, Hoyong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.68-75
    • /
    • 2018
  • A flare from an Air Force fighter was abnormally dispensed during the landing. To determine the cause of the abnormal dispensing, fracture analysis, signal analysis and reproduction experiments based on physics of failures were performed. The primary cause of the failure was analyzed to be due to an intermittent fault of an internal circuit card in the AN/ALE-40 chaff/flare dispenser by a broken lid of a capacitor, and the root cause which had derived the primary cause was considered to be an improper handling during the domestic maintenance which were changed from the overseas maintenance due to the DMSMS problem. Therefore, the overall process of the maintenance capability development system was reviewed and alternative ways that considers maintenance error decision aid(MEDA) for system improvement were suggested to prevent further failures.

Air Surveillance Using Mode-S Multilateration (모드-S 다변측정법을 이용한 항공감시기술 분석 및 전망)

  • Kim, Chang-Hwan;Han, Jae-Hyun;Kang, Ja-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.3
    • /
    • pp.9-20
    • /
    • 2010
  • Surveillance is an enabler of safety with respect to aircraft separation and as a consequence capacity and efficiency with respect to aircraft operations. The new emerging technology among modern civil aviation surveillance is Multilateration (MLAT) which would affect on the surveillance capacity with both side of surveillance signal and operational properties. Multilateration system is needed to receive the signal which must reach at least 3 ground receivers simultaneously and has the effect that will have on with the ultimate accuracy. In this paper, the principle and the system configuration are reviewed. And its benefit of development is considered with use in situations where it is difficult to locate tranditional radar. This MLAT requires no additional avionics equipment to supply service with more accurate and less expensive. And it is able to enhance performance that meets international standards and extend the investment of air navigation service providers with reducing environmental impact by utilizing a small footprint on existing structures. Finally, it can be added to meet a wide range of coverage requirements and future surveillance needs.

Design of an FPGA-Based RTL-Level CAN IP Using Functional Simulation for FCC of a Small UAV System

  • Choe, Won Seop;Han, Dong In;Min, Chan Oh;Kim, Sang Man;Kim, Young Sik;Lee, Dae Woo;Lee, Ha-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.675-687
    • /
    • 2017
  • In the aerospace industry, we have produced various models according to operational conditions and the environment after development of the base model is completed. Therefore, when design change is necessary, there are modification and updating costs of the circuit whenever environment variables change. For these reasons, recently, in various fields, system designs that can flexibly respond to changing environmental conditions using field programmable gate arrays (FPGAs) are attracting attention, and the rapidly changing aerospace industry also uses FPGAs to organize the system environment. In this paper, we design the controller area network (CAN) intellectual property (IP) protocol used instead of the avionics protocol that includes ARINC-429 and MIL-STD-1553, which are not suitable for small unmanned aerial vehicle (UAV) systems at the register transistor logic (RTL) level, which does not depend on the FPGA vender, and we verify the performance. Consequentially, a Spartan 6 FPGA model-based system on chip (SoC) including an embedded system is constructed by using the designed CAN communications IP and Xilinx Microblaze, and the configured SoC only recorded an average 32% logic element usage rate in the Spartan 6 FPGA model.

New Approach to Two-wheeler Detection using Correlation Coefficient based on Histogram of Oriented Gradients

  • Lee, Yeunghak;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.119-128
    • /
    • 2016
  • This study aims to suggest a new algorithm for detecting two-wheelers on road that have various shapes according to the viewing angle for vision based intelligent vehicles. This article describes a new approach to two-wheelers detection algorithm riding on people based on modified Histogram of Oriented Gradients (HOG) using correlation coefficient (CC). The CC between two local area variables, in which one is the person riding a bike and other is its background, can represent correlation relation. First, we extract edge vectors using HOG which includes gradient information and differential magnitude as cell based. And then, the value, which is calculated by the CC between the area of each cell and one of two-wheelers, can be extracted as the weighting factor in process for normalizing the modified HOG cell. This paper applied the Adaboost algorithm to make a strong classification from weak classification. In this experiment, we can get the result that the detection rate of the proposed method is higher than that of the traditional method.

A Study on the Estimation of Lift/Drag Using the Flight Data (비행 데이터를 이용한 양항비 추정에 관한 연구)

  • Hong, Gyo-Young;Shin, Seong-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.135-141
    • /
    • 2003
  • During flight the analysis of aircraft data recorded has played an important role in determining the causes of accidents. However, using the QAR, recently some airlines have begun to analyze flight data from uneventful airline flights to identify potential problems and correct them before they lead to accident. This paper, after the flight using the recorded data in QAR, proposes an estimated method which determines CL/CD values. The generalized aircraft dynamic equations were expressed as an estimated equation, which verified the effectiveness with simulation. The results of the present method showed that the understand of variation values of CL/CD is of great use for performance enhancement.

  • PDF

Design of Fuzzy-PID Controller for Turbojet Engine of UAV Using LabVIEW (LabVIEW를 이용한 무인항공기용 소형 터보제트 엔진의 Fuzzy-PID 제어기 설계)

  • Shin, Haeng-Cheol;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.190-195
    • /
    • 2016
  • In this paper, Propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Fuzzy-PID control algorithm. To prevent any surge or a flame out event during the engine acceleration or deceleration, the Fuzzy-PID controller effectively controls the fuel flow input of the control system. Fuzzy-PID results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbo-jet engine and the controller is designed to converge to the desired speed quickly and safely. Using LabVIEW to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.

Analysis of the Requirements and Design of KASS Measuring Equipment (KASS 탑재측정장비 요구사항 및 설계방안 분석)

  • Kim, Woo-Ri-Ul;Hong, Gyo-Young;Kang, Hee Won;Choi, Kwang-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.544-548
    • /
    • 2017
  • The International Civil Aviation Organization is recommending the use of SBAS on all aircraft by 2025 to urge PBN implementation around the world. As part of this, Korea is also developing KASS, a Korean SBAS. ICAO grants authority to the host nation aviation authority in the certification and operation of SBAS. The KASS system will be verified after detailed system design, fabrication and installation. In this paper, flight test parameters are derived from the flight inspection regulations and the configuration of the on - board measurement equipment for measuring the parameters has been proposed.