• Title/Summary/Keyword: Avicel

Search Result 135, Processing Time 0.026 seconds

Enzymatic sccharification of lignocellulosic biomass by enzyme system of brown-rot fungi (갈색부후균의 효소시스템을 이용한 목질계 바이오매스의 효소당화)

  • Yoon, Jeong-Jun;Cha, Chang-Jun;Kim, Yeong-Suk;Kim, Young-Kyoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.529-532
    • /
    • 2006
  • Recently the production of ethanol from lignocecllulosics has received much attention due to immense potential for conversion of renewable biometerials into biofuels and chemicals. Fomitopsis palustris causes a typycal brown-rot and is unusual in that it rapidly depolymerize the cellulose in wood without removing the surrounding lignin that normally prevents microbial attack. This study demonstrated that the brown rot basidiomycete F. palustris was able to degrade crystalline cellulose. This fungus could also produce the three major cellulases (BGL, EXG and EG) when the cells were grown on 2.0% Avicel. The fungus was able to degrade both the crystalline and amorphous forms of cellulose from woody biomasses. Moreover, we found that this fungus has the processive EG like CBH which are able to degrade the crystalline region of cellulose. To establish the cellulase system in relation with degradation of woody biomass, we performed that purification, characterization and molecular cloning of a BGL, EGs and GLA from F. palustris grown on Avicel.

  • PDF

Production of Cellulase by Trichoderma reesei Rut C30 in Wheat Bran-containing Media

  • Yu, Xiao-Bin;Yun, Hyun-Shik;Koo, Yoon-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.208-213
    • /
    • 1998
  • The effect of the addition of wheat bran to the growth medium on the production of cellulolytic enzymes of Trichoderma reesei Rut C30 was studied in batch culture using shake flasks. The activity of cellulase was enhanced by the addition of wheat bran to the cellulase production medium. $KH_2PO_4$-$K_2HPO_4$ buffer was used for pH control during cellulase production. As a result, high cellulase activities were obtained in shake flask culture; a CMC (carboxymethyl cellulose) activity of 125.78 U/ml was obtained from 2% Avicel- and 3% wheat bran-containing medium and an FP (filter paper) activity of 12.85U/ml was obtained from 1% Avicel- and 5% wheat bran-containing medium after 6 days of cultivation.

  • PDF

Functional Analysis of a Gene Encoding Endoglucanase that Belongs to Glycosyl Hydrolase Family 12 from the Brown-Rot Basidiomycete Fomitopsis palustris

  • Song, Byeong-Cheol;Kim, Ki-Yeon;Yoon, Jeong-Jun;Sim, Se-Hoon;Lee, Kang-Seok;Kim, Yeong-Suk;Kim, Young-Kyoon;Cha, Chang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.404-409
    • /
    • 2008
  • The brown-rot basidiomycete Fomitopsis palustris is known to degrade crystalline cellulose (Avicel) and produce three major cellulases, exoglucanases, endoglucanases, and ${\beta}$-glucosidases. A gene encoding endoglucanase, designated as cel12, was cloned from total RNA prepared from F. palustris grown at the expense of Avicel. The gene encoding Cel12 has an open reading frame of 732 bp, encoding a putative protein of 244 amino acid residues with a putative signal peptide residing at the first 18 amino acid residues of the N-terminus of the protein. Sequence analysis of Cel12 identified three consensus regions, which are highly conserved among fungal cellulases belonging to GH family 12. However, a cellulose-binding domain was not found in Cel12, like other GH family 12 fungal cellulases. Northern blot analysis showed a dramatic increase of cel12 mRNA levels in F. palustris cells cultivated on Avicel from the early to late stages of growth and the maintenance of a high level of expression in the late stage, suggesting that Cel12 takes a significant part in endoglucanase activity throughout the growth of F. palustris. Adventitious expression of cel12 in the yeast Pichia pastoris successfully produced the recombinant protein that exhibited endoglucanase activity with carboxymethyl cellulose, but not with crystalline cellulose, suggesting that the enzyme is not a processive endoglucanase unlike two other endoglucanases previously identified in F. palustris.

Production of Xylanase by Bacillus sp. DSNC 101 (Bacillus sp. DSNC 101에 의한 Xylanase 생산)

  • 조남철
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.344-349
    • /
    • 1997
  • A strain of Bacillus sp. DSNC 101, isolated from soil, produced up to 305.0 units/ml of xylanase when grown on te medium containing 2.0% xylan, 2.0% yeast extract and 0.4% K2HPO4. The strain produced xylanase in the presence of xylan, soluble starch, rice straw, Avicel, maltose, and lactose as a sole carbon source, but the enzyme was not synthesized in the presence of xylose, glucose or arabinose. The crude xylanase preparation did not show hydrolytic activity towards cellulosic substrates and PNPX, a chromogenic substrate for $\beta$-xylosidase. The temperature and pH optima for the xylanase production were 4$0^{\circ}C$ and 8.0, respectively. Xylanase synthesis was repressed by glucose, but not by xylose. The hydrolysis products of xylan catalyzed with the culture filtrate were xylooligosaccharides such as xylobiose and xylotriose but xylose was not detected by tin layer chromatography.

  • PDF

The Enzymatic Hydrolysis of Cellulose in Supercritical Carbon Dioxide Fluid (초임계 이산화탄소 유체에서 섬유소의 효소 가수분해)

  • Park, Chang-Yeol;Kim, Chul;Ryu, Yeon-Woo
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.687-692
    • /
    • 1998
  • Experimental studies were carried out on the use of supercritical fluid in enzymatic hydrolysis of cellulose. In order to effectively perform the hydrolysis the enzyme has to maintain stability and activity in the supercritical carbon dioxide solvent. In the experiment it was found that the stability of cellulase was maintained up to 160 atm for 90 min at $50^{\circ}C$. In the enzymatic hydrolysis of cellulose at supercritical conditions using carbon dioxide at 80 atm and $50^{\circ}C$ for 90 min, the results showed that glucose yield was 100%, which was 1.5 times as compared to that in atmospheric condition when the substrate (Avicel) concentration was 20 g/L. For the substrate concentration of 60 g/L, the glucose yield was increased by 1.2 times as compared to that in atmospheric condition.

  • PDF

Pretreatment of Corn Stover for Improved Enzymatic Saccharification using Ammonia Circulation Reactor (ACR) (순환식 암모니아 반응기(Ammonia Circulation Reactor (ACR))를 이용한 옥수수대의 전처리 및 효소 당화율 향상)

  • Shrestha, Rubee Koju;Hur, Onsook;Kim, Tae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.335-341
    • /
    • 2013
  • Ammonia circulation reactor (ACR) was devised for the effective pretreatment of corn stover. This method is designed to circulate aqueous ammonia continuously so that it can reduce the chemical and water consumption during pretreatment. In this study, ammonia pretreatment with various reaction conditions such as reaction time (4~12 hour), temperature ($60{\sim}80^{\circ}C$), and solid:liquid ratio (1:3~1:8) was tested. Chemical compositions including solid remaining after reaction, lignin and carbohydrates were analyzed and enzymatic digestibility was also measured. It was observed that as reaction conditions become more severe, lignin removal was significantly affected, which was in the range of 47.6~70.6%. On the other hands, glucan and xylan losses were not substantial as compared to that of lignin. At all tested conditions, the glucan loss was not changed substantially, which was between 4.7% and 15.2%, while the xylan loss varied, which was between 7.4% and 25.8%. With (15 FPU-GC220+30 CBU)/g-glucan of enzyme loading, corn stover treated using ammonia circulation reactor for 8~12 hours resulted in 90.1~94.5% of 72-h glucan digestibility, which was higher than 92.7% of $Avicel^{(R)}$-101. In addition, initial hydrolysis rate (at 24 hour) of this treated corn stover was 73.0~79.4%, which was shown to be much faster than 69.5% of $Avicel^{(R)}$-101. As reaction time increased, more lignin removal and it was assumed that the enhanced enzymatic digestibility of treated biomass was attributed to the lignin removal.

Stability Analysis of Bacillus stearothermopilus L1 Lipase Fused with a Cellulose-binding Domain

  • Hwang Sangpill;Ahn Ik-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.329-333
    • /
    • 2005
  • This study was designed to investigate the stability of a lipase fused with a cellulose­binding domain (CBD) to cellulase. The fusion protein was derived from a gene cluster of a CBD fragment of a cellulase gene in Trichoderma hazianum and a lipase gene in Bacillus stearother­mophilus L1. Due to the CBD, this lipase can be immobilized to a cellulose material. Factors affecting the lipase stability were divided into the reaction-independent factors (RIF), and the re­action-dependent factors (RDF). RIF includes the reaction conditions such as pH and tempera­ture, whereas substrate limitation and product inhibition are examples of RDF. As pH 10 and $50^{\circ}C$ were found to be optimum reaction conditions for oil hydrolysis by this lipase, the stability of the free and the immobilized lipase was studied under these conditions. Avicel (microcrystal­line cellulose) was used as a support for lipase immobilization. The effects of both RIF and RDF on the enzyme activity were less for the immobilized lipase than for the free lipase. Due to the irreversible binding of CBD to Avicel and the high stability of the immobilized lipase, the enzyme activity after five times of use was over $70\%$ of the initial activity.

Purification and Characterization of Xylanase II from Trichoderma koningii ATCC 26113 (Trichoderma koningii ATCC 26113으로부터 Xylanase II의 순수분리 및 특성)

  • Kim, Hyun-Ju;Kang. Sa Ouk;Hah, Yung-Chil
    • Korean Journal of Microbiology
    • /
    • v.31 no.2
    • /
    • pp.157-165
    • /
    • 1993
  • A 1, 4-.betha.-D-xylanase, designated as xylanase II, was purified from the culture filtrate of Trichoderma koningii ATCC 251131 by column chromatography on Sephadex G-75, SP-Sephadex C-50, DEAE-Sephadex A-50 and Sephadex G-50 with an overall yield of 6.97%. It has a molecular weight of 21.000 and an isoelectric point of 9.4. The enzyme activity is optimal at pH 5.0 and at a temperature of 50.deg.C. Xylanase II is stable up to 50.deg.C, while 40 and 90% of its activity are lost after the incubation for 30 and 60 min at 60.deg.C. The enzyme degrades xylan with relatively high activity, as well as carboxymethylcellulose and Avicel. Its $K_{m}$ values for oat-spelt xylan, larchwood xylan and Avicel are 7.48, 1.98 and 13.33 mg/ml, respectively. The hydrolysis products of oat-spelt xylan by xylanase II are xylose, xylobiose, xylotriose and arabinoxylotriose, while the reaction products of larchwood xylan are xylose, xylobiose, xylotriose and small amount of higher oligomers. The action paterns of the enzyme demonstrate that xylanase II is endo-enzyme.

  • PDF

Genomic Analysis of Actinomyces sp. Strain CtC72, a Novel Fibrolytic Anaerobic Bacterium Isolated from Cattle Rumen

  • Joshi, Akshay;Vasudevan, Gowdaman;Engineer, Anupama;Pore, Soham;Hivarkar, Sai Suresh;Lanjekar, Vikram Bholanath;Dhakephalkar, Prashant Kamalakar;Dagar, Sumit Singh
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • A xylanolytic and cellulolytic anaerobic bacterium strain CtC72 was isolated from cattle rumen liquor. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain CtC72 shared only 97.78% homology with its nearest phylogenetic affiliate Actinomyces ruminicola, showing its novelty. The strain could grow on medium containing xylan, carboxymethyl cellulose and avicel producing $CO_2$, acetate, and ethanol as major fermentation products. The whole genome analysis of the strain CtC72 exhibited a broad range of carbohydrate-active enzymes required for the breakdown and utilization of lignocellulosic biomass. Genes related to the production of ethanol and stress tolerance were also detected. Further there were several unique genes in CtC72 for chitin degradation, pectin utilization, sugar utilization, and stress response in comparison with Actinomyces ruminicola. The results show that the strain CtC72, a putative novel bacterium can be used for lignocellulosic biomass based biotechnological applications.

Isolation and Characteristics of Trichoderma harzianum FJI Producing Cellulases and Xylanase

  • Kim, Kyoung-Cheol;Yoo, Seung-Soo;Oh, Young-A;Kim, Seong-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Strain FJI, a filamentous fungus isolated from rotten wood, showed high ability to hydrolyze cellulosic materials. To identify the strain FJI, ITS sequencing analysis and morphological observation were performed. The strain FJI was identified as Trichoderma harzianum. The strain produced a large amount of CMCase, xylanase, ${\beta}-glucosidase$, and avicelase. Optimal culture conditions for the production of the enzymes, such as pH, temperature, and inoculation concentration, were initial pH 6.0-7.0,$25-30^{\circ}C$, and $10^4$ ea-spores/ml in Mandel's medium, respectively. T.hanzianum FJI utilized various cellulosic materials and organic nitrogen sources to produce cellulases and xylanase, and also considerably a crystalline and/or insoluble material like Avicel and rice straw. The highest levels of CMCase and xylanase were 41.2 and 65.6 U/ml in 7 days of cultivation using 2.5% of carbon source (Avicel+CMC) and 0.5% of nitrogen source (peptone), respectively.