• 제목/요약/키워드: Average nearest neighbor analysis

검색결과 33건 처리시간 0.021초

K-NN과 최대 우도 추정법을 결합한 소프트웨어 프로젝트 수치 데이터용 결측값 대치법 (A Missing Data Imputation by Combining K Nearest Neighbor with Maximum Likelihood Estimation for Numerical Software Project Data)

  • 이동호;윤경아;배두환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권4호
    • /
    • pp.273-282
    • /
    • 2009
  • 소프트웨어 프로젝트 데이터를 이용한 각종 분석 예측 모델 생성시 직면하는 문제 중 하나는 데이터에 포함된 결측값이며 이에 대한 효과적인 방안은 결측값 대치 법이다. 대표적인 결측값 대치법인 K 최근접 이웃 대치법은 대치과정에서 결측값을 포함하는 인스턴스의 관측정보를 활용하지 못한다는 단점이 있다. 본 연구에서는 이러한 단점을 극복하기 위해 K 최근접 이웃 대치법과 최대 우도 추정법을 결합한 새로운 소프트웨어 프로젝트 수치 데이터용 결측값 대치법을 제안한다. 또한 결측값 대치법의 정확도를 비교하기 위한 새로운 측도를 함께 제안한다.

면적평균강우량 산정을 통한 강우관측망 평가 및 추정오차 (Evaluation of Raingauge Network using Area Average Rainfall Estimation and the Estimation Error)

  • 이지호;전환돈
    • 한국습지학회지
    • /
    • 제16권1호
    • /
    • pp.103-112
    • /
    • 2014
  • 면적평균강우량의 산정은 가용 수자원의 정확한 양을 파악하고 강우-유출해석에 필수적인 입력자료이기 때문에 매우 중요하다. 이와 같은 면적평균강우량의 정확한 산정을 위한 필수적인 조건은 강우관측망의 균일한 공간적 분포이다. 본 연구에서는 보다 향상된 유역 면적평균강우량 산정을 위한 강우관측망의 공간분포 평가방법론을 제시하고, 이를 한강 및 금강 유역에 적용하였다. 강우관측소의 공간적 분포 특성은 최근린 지수(nearest neighbor index)를 이용하여 정량화하였다. 유역별 강우관측소의 공간적 분포가 면적평균강우량 산정에 미치는 영향을 평가하기 위하여 2013년의 강우사상에 대해 산술평균법, 티센가중법, 추정이론을 이용하여 면적평균강우량을 산정하고 각 경우에 대해 추정오차를 평가하였다. 그 결과 공간분포가 우수한 유역은 면적평균강우량의 추정오차가 상대적으로 작으며, 반대로 공간분포가 왜곡된 유역의 경우는 상대적으로 추정오차가 큼을 확인하였다.

최근접 이웃 규칙 기반 프로토타입 선택과 편의-분산을 이용한 성능 평가 (Nearest-neighbor Rule based Prototype Selection Method and Performance Evaluation using Bias-Variance Analysis)

  • 심세용;황두성
    • 전자공학회논문지
    • /
    • 제52권10호
    • /
    • pp.73-81
    • /
    • 2015
  • 이 논문은 프로토타입 선택 방법을 제안하고, 편의-분산 분해를 이용하여 최근접 이웃 알고리즘과 프로토타입 기반 분류 학습의 일반화 성능 비교 평가에 있다. 제안하는 프로토타입 분류기는 클래스 영역 내에서 가변 반지름을 이용한 다차원 구를 정의하고, 적은 수의 프로토타입으로 구성된 새로운 훈련 데이터 집합을 생성한다. 최근접 이웃 분류기는 새 훈련 집합을 이용하여 테스트 데이터의 클래스를 예측한다. 평균 기대 오류의 편의와 분산 요소를 분해하여 최근접 이웃 규칙, 베이지안 분류기, 고정 반지름을 이용한 프로토타입 선택 방법, 제안하는 프로토타입 선택 방법의 일반화 성능을 비교한다. 실험에서 제안하는 프로토타입 분류기의 편의-분산 변화 추세는 모든 훈련 데이터를 사용하는 최근접 이웃 알고리즘과 비슷한 편의-분산 추세를 보였으며, 프로토타입 선택 비율은 전체 데이터의 평균 약 27.0% 이하로 나타났다.

고객 맞춤 서비스를 위한 HPPS(Hybrid Preference Prediction System) 설계 (A Design of HPPS(Hybrid Preference Prediction System) for Customer-Tailored Service)

  • 정은희;이병관
    • 한국멀티미디어학회논문지
    • /
    • 제14권11호
    • /
    • pp.1467-1477
    • /
    • 2011
  • 본 논문에서는 고객 맞춤 서비스의 선호도를 정확하게 예측하기 위하여 사용자 프로파일 분석, 사용자간 유사도 분석을 이용한 HPPS(Hybrid Preference Prediction System) 설계를 제안한다. 기존의 NBCFA(Neighborhood Based Collaborative Filtering Algorithm)과 달리, 본 논문은 첫째, 선호도 예측식에서 이웃의 상품 평가가 없을 경우 상품에 대한 평균값을 이용하도록 하였고, 둘째, 선호도 예측식에서 사용자의 특성을 분석한 가중치를 반영하도록 하였고, 끝으로, 인접 이웃을 선정할 때 유사도, 상품 평가 여부, 평가 횟수를 반영하여 HPPS에 선호도의 정확도를 향상시켰다. 따라서 첫째와 둘째의 선호도 예측식을 이용하면 HPPS의 정확도는 기존의 NBCFA에 비해 97.24% 향상되었고, 인접이웃 선정방식에서도 HPPS 시스템의 정확도가 75% 향상되었다.

열역학법을 이용한 DNA hybridization 특성 검출 및 해석 (Detection and Analysis of DNA Hybridization Characteristics by using Thermodynamic Method)

  • 김도균;권영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권6호
    • /
    • pp.265-270
    • /
    • 2002
  • The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and application area. So, the improvement of DNA hybridization detection method is very important for the determination of this hybridization reaction. Several molecular biological techniques require accurate predictions of matched versus mismatched hybridization thermodynamics, such as PCR, sequencing by hybridization, gene diagnostics and antisense oligonucleotide probes. In addition, recent developments of oligonucleotide chip arrays as means for biochemical assays and DNA sequencing requires accurate knowledge of hybridization thermodynamics and population ratios at matched and mismatched target sites. In this study, we report the characteristics of the probe and matched, mismatched target oligonucleotide hybridization reaction using thermodynamic method. Thermodynamic of 5 oligonucleotides with central and terminal mismatch sequences were obtained by measured UV-absorbance as a function of temperature. The data show that the nearest-neighbor base-pair model is adequate for predicting thermodynamics of oligonucleotides with average deviations for $\Delta$H$^{0}$ , $\Delta$S$^{0}$ , $\Delta$G$_{37}$ $^{0}$ and T$_{m}$, respectively.>$^{0}$ and T$_{m}$, respectively.

이동 평균 기반 동적 시간 와핑 기법을 이용한 시계열 키워드 데이터의 분류 성능 개선 방안 (Enhancing Classification Performance of Temporal Keyword Data by Using Moving Average-based Dynamic Time Warping Method)

  • 정도헌
    • 정보관리학회지
    • /
    • 제36권4호
    • /
    • pp.83-105
    • /
    • 2019
  • 본 연구는 시계열 특성을 갖는 데이터의 패턴 유사도 비교를 통해 유사 추세를 보이는 키워드를 자동 분류하기 위한 효과적인 방법을 제안하는 것을 목표로 한다. 이를 위해 대량의 웹 뉴스 기사를 수집하고 키워드를 추출한 후 120개 구간을 갖는 시계열 데이터를 생성하였다. 제안한 모델의 성능 평가를 위한 테스트 셋을 구축하기 위해, 440개의 주요 키워드를 8종의 추세 유형에 따라 수작업으로 범주를 부여하였다. 본 연구에서는 시계열 분석에 널리 활용되는 동적 시간 와핑(DTW) 기법을 기반으로, 추세의 경향성을 잘 보여주는 이동평균(MA) 기법을 DTW에 추가 적용한 응용 모델인 MA-DTW를 제안하였다, 자동 분류 성능 평가를 위해 k-최근접 이웃(kNN) 알고리즘을 적용한 결과, ED와 DTW가 각각 마이크로 평균 F1 기준 48.2%와 66.6%의 최고 점수를 보인 데 비해, 제안 모델은 최고 74.3%의 식별 성능을 보여주었다. 종합 성능 평가를 통해 측정된 모든 지표에서, 제안 모델이 기존의 ED와 DTW에 비해 우수한 성능을 보임을 확인하였다.

k-NN을 활용한 터보팬 엔진의 잔여 유효 수명 예측 모델 제안 (A Proposal of Remaining Useful Life Prediction Model for Turbofan Engine based on k-Nearest Neighbor)

  • 김정태;서양우;이승상;김소정;김용근
    • 한국산학기술학회논문지
    • /
    • 제22권4호
    • /
    • pp.611-620
    • /
    • 2021
  • 정비 산업은 사후정비, 예방정비를 거쳐, 상태기반 정비를 중심으로 진행되고 있다. 상태기반 정비는 장비의 상태를 파악하여, 최적 시점에서의 정비를 수행한다. 최적의 정비 시점을 찾기 위해서는 장비의 상태, 즉 잔여 유효 수명을 정확하게 파악하는 것이 중요하다. 이에, 본 논문은 시뮬레이션 데이터(C-MAPSS)를 사용한 터보팬 엔진의 잔여 유효수명(RUL, Remaining Useful Life) 예측 모델을 제시한다. 모델링을 위해 C-MAPSS(Commercial Modular Aero-Propulsion System Simulation) 데이터를 전처리, 변환, 예측하는 과정을 거쳤다. RUL 임계값 설정, 이동평균필터 및 표준화를 통해 데이터 전처리를 수행하였고, 주성분 분석(Principal Component Analysis)과 k-NN(k-Nearest Neighbor)을 활용하여 잔여 유효 수명을 예측하였다. 최적의 성능을 도출하기 위해, 5겹 교차검증기법을 통해 최적의 주성분 개수 및 k-NN의 근접 데이터 개수를 결정하였다. 또한, 사전 예측의 유용성, 사후 예측의 부적합성을 고려한 스코어링 함수(Scoring Function)를 통해 예측 결과를 분석하였다. 마지막으로, 현재까지 제시되어온 뉴럴 네트워크 기반의 알고리즘과 예측 성능 비교 및 분석을 통해 k-NN 활용 모델의 유용성을 검증하였다.

K 최대근접이웃 방법을 이용한 통행시간 예측에 대한 연구 (A Study of Travel Time Prediction using K-Nearest Neighborhood Method)

  • 임성한;이향미;박성룡;허태영
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.835-845
    • /
    • 2013
  • 통행시간은 교통정보 중에서 가장 대표적이고 이용자 선호도가 높은 정보이다. 본 연구에서는 일반국도를 대상으로 실시간 시스템에 적용 가능한 통행시간 예측 방법을 개발하고자 하였다. 통행시간 예측방법으로 비모수적 접근 방법인 K 최대근접이웃 방법을 적용하였다. K 최대근접이웃 방법은 데이터에 대한 특별한 가정이 필요 없고, 모수 추정 과정이 필요 없어 실시간 교통관리시스템에 적합하다. K 최대근접이웃 방법의 우수성을 평가하기 위해 교통 분야에서 많이 적용되고 있는 이력자료 평균방법과 칼만 필터방법을 선정하여 평균절대백분율오차와 변동계수를 통해 평가하였다. 평가 결과 K 최대근접이웃 방법이 이력자료 평균방법과 칼만 필터방법에 비해 우수한 것으로 분석되었다. 통행시간 정보 제공 시 본 연구에서 개발된 방법을 통해 도출된 통행시간과 구간검지기로부터 관측된 통행시간을 탄력적으로 적용함으로써 통행시간 정보의 신뢰도를 향상시킬 수 있을 것으로 기대된다.

우리나라 산악기상관측망의 공간분포 특성 (The spatial distribution characteristics of Automatic Weather Stations in the mountainous area over South Korea)

  • 윤석희;장근창;원명수
    • 한국농림기상학회지
    • /
    • 제20권1호
    • /
    • pp.117-126
    • /
    • 2018
  • 본 연구는 품질평가 등급이 우수한 4개 기관에서 운영하고 있는 990개의 AWS 중에서 고도가 200m 이상인 산악지역에 분포하고 있는 산악기상관측소의 공간분포 특성과 연도별 공간변화를 분석하였다. 공간분포특성 분석을 위해 2012년부터 2016년까지 203개의 산악기상관측망을 대상으로 유클리디안 거리 분석, 최근 린지수 분석, 커널밀도 분석 방법으로 공간분석을 수행하였다. 평균거리 분석 결과, 2012년(3개 기관)은 29.0km, 2012년(4개 기관) 26.6km, 2013년 21.9km, 2014년 16.9km, 2015년 14.3km, 2016년은 12.6km로 2012년부터 2016년까지 16.4km가 감소하는 효과를 보였다. 최근린지수는 0.666632~0.811237였으며, 군집화 범위인 Z-score 검정 결과는 -4.372239~-5.145115, 통계적으로는 P-value(P<0.01)로 매우 유의하면서 산악기상관측망이 군집화 형태로 분포하는 것으로 나타났다. 커널밀도 분석 결과, 2012년은 129,719ha/1개소, 2013년 90,917ha/1개소, 2014년 71,342ha/1개소, 2015년 58,875ha/1개소로, 2016년은 50,914ha/1개소로 2012년부터 2016년까지 169,399ha/1개소가 감소하면서 산악기상관측망 공간분포 밀도가 높아진 결과를 보였다. 따라서 백두대간 일부 지역과 경북 내륙, 경남북서부 지역을 대상으로 최적의 입지에 산악기상관측망을 확충하는 것이 필요하다고 사료된다.

공간 패널 회귀모형을 이용한 양파 생산량 추정 (Onion yield estimation using spatial panel regression model)

  • 최성천;백장선
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.873-885
    • /
    • 2016
  • 노지에서 재배되는 양파 생산량은 기후환경에 의하여 영향을 받으며, 특정 지역에서 많이 생산되는 지역적인 특성을 가지고 있다. 따라서 생산량 예측시 기상과 지역을 동시에 고려하는 접근이 필요하다. 본 논문에서는 공간 패널 회귀모형을 이용하여 기상변화에 따른 생산량을 추정하였다. 양파 주산지 13곳에 대한 2006년부터 2015년까지의 기상 패널자료를 사용하여, 공간시차를 반영한 공간자기회귀(spatial autoregressive)모형을 사용하였다. 공간가중치 행렬은 임계치 설정방법과 최근거리 설정방법으로 나누어 분석하여, 최근 3곳까지 거리 설정방법을 사용한 모형이 최종 모형으로 선택되었으며, 자기상관성이 유의함을 보였다. 하우스만 검정을 통해 채택된 확률효과모형으로 분석한 결과 누적일조시간(1월), 평균상대습도(4월), 평균최저기온(6월), 누적강수량(11월) 등이 양파 생산량 예측에 유의한 변수로 나타났다.