• Title/Summary/Keyword: Average concentrations

Search Result 2,276, Processing Time 0.033 seconds

Methane Fermentation of Facultative Pond in Pond System for Ecological Treatment and Recycling of Livestock Wastewater (축산폐수 처리 및 재활용을 위한 조건성연못의 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 2000
  • A wastewater treatment pond system was developed for treatment and recycling of dairy cattle excreta of $5\;m^1$ per day. The wastes were diluted by the water used for clearing stalls. The system was composed of three ponds in series. A submerged gas collector for the recovery of methane was installed at the bottom of secondary pond with water depth of 2.4m. This paper deals mainly with performance of methane fermentation of secondary pond which is faclutative one. The average $BOD_5$, SS, TN, and TP concentrations of influent into secondary pond were 49.1, 53.4, 48.6, and 5.3 mg/l, and those of effluent from it were 27.9, 45.7, 30.8, 3.2 mg/l respectively. Methane fermentation of 2.4-meter-deep secondary pond bottom was well established at $16^{\circ}C$ and gas garnered from the collector at that temperature was 80% methane. Literature on methane fermentation of wastewater treatment ponds shows that methane bacteria grow well around $24^{\circ}C$, the rate of daily accumulation and decomposition of sludge is approximately equal at $19^{\circ}C$, and activities of methanogenic bacteria are ceased below $14^{\circ}C$. The good methane fermentation of the pond bottom around $16^{\circ}C$, about $3^{\circ}C$ lower than $19^{\circ}C$, results from temperature stability, anaerobic condition, and neutral pH of the bottom sludge layer. It is recommended that the depth of pond water could be 2.4m. Gas from the collector during active methane fermentation was almost 83% methane, less than 17% nitrogen. Carbon dioxide was less than 1% of the gas, which indicates that carbon dioxide produced in bottom sludges was dissolved in the overlaying water column. Thus a purified methane can be collected and used as energy source. Sludge accumulation on the pond bottom for a nine month period was 1.3cm and annual sludge depth can be estimated to be 1.7cm. Design of additional pond depth of 0.3m can lead to 15 - 20 year sludge removal.

  • PDF

Reservoir Trophic State and Empirical Model Analysis, Based on Nutrients, Transparency, and Chlorophyll-${\alpha}$ Along with Their Relations Among the Parameters (영양염류, 투명도 및 엽록소를 이용한 인공호 영양상태, 경험적 모델 분석 및 변수들 간의 상호관계)

  • An, Kwang-Guk;Kim, Jae-Kyeng;Lee, Sang-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.252-263
    • /
    • 2008
  • The purpose of this study was to determine trophic state, based on nutrients (TN, TP), transparency (SD), and chlorophyll-${\alpha}$ (Chl) and identify their empirical relations of TN-Chl, TP-Chl and Chl-SD depending on the dataset used along with dynamics of conductivity and suspended solids. Analysis of trophic states showed that more than half of 36 reservoirs were judged as eutrophic-hypertrophic conditions depending on the trophic variables. Seasonal values of TP varied by nearly 500% and showed greater in August than any other months. In contrast, TN varied within less than 90% and all monthly mean values of TN were never fall less than 1.2 mg L$^{-1}$ indicating low seasonal variations and high ambient concentrations (eutrophic-hypertrophic state). Analysis of empirical relations in the trophic variables showed that transparency had greater functional relations with Chl (R$^2$=0.31, p<0.001) than TP (R$^2$=0.15, p<0.001) and TN (R$^2$=0.20, p<0.001). Ratios of TN : TP in the ambient water indicated that most reservoirs showed a potential phosphorous limitation on the algal growth. Thus, algal biomass, based on Chl values, was more regulated by phosphorous than nitrogen. Analysis of linear regression model, based on log-transformed annual mean values, showed that only 30% in the variation of Chl was explained by TP (R$^2$=0.295, p=0.001, n=36) and 15% by TN (R$^2$=0.151, p=0.019, n=36). However, linear regression model, based on individual system, showed that Chl-TP model had strong positive relations (R$^2$=0.62, p=0.002, n=12), whereas the model had no any relations (p=0.892, n=12). Overall, our data suggested that averaging effect in the empirical model developments may influence the significance in the statistical analysis.

Dietary corn resistant starch regulates intestinal morphology and barrier functions by activating the Notch signaling pathway of broilers

  • Zhang, Yingying;Liu, Yingsen;Li, Jiaolong;Xing, Tong;Jiang, Yun;Zhang, Lin;Gao, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2008-2020
    • /
    • 2020
  • Objective: This study was conducted to investigate the effects of dietary corn resistant starch (RS) on the intestinal morphology and barrier functions of broilers. Methods: A total of 320 one-day-old broilers were randomly allocated to 5 dietary treatments: one normal corn-soybean (NC) diet, one corn-soybean-based diet supplementation with 20% corn starch (CS), and 3 corn-soybean-based diets supplementation with 4%, 8%, and 12% corn resistant starch (RS) (identified as 4% RS, 8% RS, and 12% RS, respectively). Each group had eight replicates with eight broilers per replicate. After 21 days feeding, one bird with a body weight (BW) close to the average BW of their replicate was selected and slaughtered. The samples of duodenum, jejunum, ileum, caecum digesta, and blood were collected. Results: Birds fed 4% RS, 8% RS and 12% RS diets showed lower feed intake, BW gain, jejunal villus height (VH), duodenal crypt depth (CD), jejunal VH/CD ratio, duodenal goblet cell density as well as mucin1 mRNA expressions compared to the NC group, but showed higher concentrations of cecal acetic acid and butyric acid, percentage of jejunal proliferating cell nuclear antigen-positive cells and delta like canonical Notch ligand 4 (Dll4), and hes family bHLH transcription factor 1 mRNA expressions. However, there were no differences on the plasma diamine oxidase activity and D-lactic acid concentration among all groups. Conclusion: These findings suggested that RS could suppress intestinal morphology and barrier functions by activating Notch pathway and inhibiting the development of goblet cells, resulting in decreased mucins and tight junction mRNA expression.

Short-term Variations in Community Structure of Phytoplankton and Heterotrophic Protozoa during the Early Fall Phytoplankton Blooms in the Coastal Water off Incheon, Korea (인천 연안의 초가을 식물플랑크톤 대증식기에 식물플랑크톤과 종속영양 원생동물 군집의 단주기 변동)

  • Yang, Eun-Jin;Choi, Joong-Ki
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.101-112
    • /
    • 2007
  • In order to examine the short-term variations of phytoplankton and heterotrophic protozoa community structures with bloom events, water samples were collected every other day at one site in the coastal water off Incheon, Korea, from August 15-September 30, 2001. $Chlorophyll-{\alpha}$ concentrations varied widely from 1.8 to $19.3\;{\mu}g\;l^{-1}$ with the appearances of two major peaks of $Chlorophyll-{\alpha}$ concentration during the study period. Size-fractionated $Chlorophyll-{\alpha}$ concentration showed that net-size fraction ($>20\;{\mu}m$) comprised over 80% of total $Chlorophyll-{\alpha}$ during the first and second bloom periods, nano-size fraction ($3{\sim}20\;{\mu}m$) comprised average 42% during the pre- (before the first bloom) and post-bloom periods (after the second bloom), and pico- size fraction ($<3\;{\mu}m$) comprised over 50% during inter-bloom periods (i.e. between the first and second bloom periods). Dominant phytoplankton community was shifted from autotrophic nanoflagellates to diatom, diatom to picophytoplankton, picophytoplankton to diatom, and then diatom to autotrophic nanoflagellates, during the pre-, the first, the inter, the second, and the post-bloom periods, respectively. During the blooms, Chaetoceros pseudocrinitus and Eucampia zodiacus were dominant diatom species composed with more than 50% of total diatom. Carbon biomass of heterotrophic protozoa ranged from 8.2 to $117.8\;{\mu}gC\;l^{-1}$ and showed the highest biomass soon after the peak of the first and second blooms. The relative contribution of each group of the heterotrophic protozoa showed differences between the bloom period and other periods. Ciliates and HDF were dominant during the first and second bloom periods, with a contribution of more than 80% of the heterotrophic protozoan carbon biomass. Especially, different species of HDF, thecate and athecate HDF, were dominant during the first and the second bloom periods, respectively. Interestingly, Noctiluca scintillans appeared to be one of the key organisms to extinguish the first bloom. Therefore, our study suggests that heterotrophic protozoa could be a key player to control the phytoplankton community structure and biomass during the study period.

Ecological Examinations of the Radial Growth of Pine Trees (Pinus densiflora S. et Z.) on Mt. Namsan and the Potential Effects of Current Level of Air Pollutants to the Growth of the Trees in Central Seoul, Korea.

  • Kim, Eun-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.371-386
    • /
    • 1994
  • Ecological examinations of the radial growth Patterns of pine trees(Pinus densiflora Sieb. et Zucc) growing on Mt. Namsan in central Seoul were made to test a Proposition that the pine trees decline due to the influence of air pollution and acid rain, which was proposed by some researchers in Korea, and the potential effects of current level of air pollutants to the growth of the Pine trees in central Seoul have been speculated. Tree-rings of 40 trees sampled at 3 sites of Mt. Namsan were prepared and examined using a Computer-aided Tree-Ring Measuring System at Kookmin University, Korea. Air Pollutant data collected by the Ministry of Environment( MOE ) and the Forestry Research Institute(FRI) were used to infer the general conditions of the environment. Correlation analysis was applied to the data set of tree growth and the other environmental factors. General information derived from the close examination of the tree-rings and the data on air pollution, drought and the other biological conditions suggested that the growth of the pine trees was severely affected by the occurrence of drought(climatic variation), the prevalence of the pine leaf gall midges(insects), and the suppression by the black locust trees(Robinia pseudo-acacia L.) (competition among trees). While the current condition of air pollution in Seoul cannot be categorized as good, the concentrations of air pollutants are not so high as to cause acute damages to the trees. In addition, while the data of rain acidity showed episodic low PHs of under 4.0, the average of them is far less acidic than those which were observed in either northeastern United States or central Europe, where the decline of trees were not solely attributed to any of the air pollutants. Considering the sequential facts that one of the most important environmental factors that affect the growth of trees is weather condition of the forest that the proposition of the decline of the pine trees was made without careful examination of the growth patterns and past growth history of them as well as the complex influences of many other factors including the weather conditions to the growth of trees, and that no objective explanation has been made on the causal relationships between the current condition of air pollution and the growth of the trees, such a proposition should be evaluated as invalid for the explanation of tree growth on Mt. Namsan in central Seoul, Korea. The author evaluates the factors of air pollution (including acid rain) as the predisposing factors, which may have the Potentials to chronically affect the tree growth at the forest ecosystem on Mt. Namsan for a long period of time. Ecosystem ecological studies should be further carried out to carefully explain both the functional and the structural aspects of the ecosystem processes, which include the biogeochemistry and the long-term changes of soil conditions as well as the growth of the other tree species on the mountain.

  • PDF

Changes in Aboveground Biomass and Nutrient Accumulation of the Korean-pine (Pinus koraiensis) Plantation by Stand Age at kangwondo Province (강원도(江原道) 지방(地方) 잣나무 인공림(人工林)의 임령변화(林齡變化)에 따른 지상부(地上部) 현존량(現存量)과 양분축적(養分蓄積))

  • Yi, Myong-Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.2
    • /
    • pp.276-285
    • /
    • 1998
  • The aboveground biomass and nutrient content (N, P, K, Ca and Mg) of Pinus koraiensis S. et Z., aged 9, 22, 34, 46, 66 years, were measured in the Experiment Forest of Kangwon National University of Kangwondo province. The site index of the stands ranged from 13.5 to 14.2. Allometric equations (logY=alogX+b, where Y, X is ovendry mass and DBH, respectively) relating dry weights of stem, branches and needles to diameter at breast height (DBH) were developed to estimate aboveground tree biomass. Total above ground tree biomass increased with stand age from $21.8t\;ha^{-1}$ in the 9-year-old stand to $130t\;ha^{-1}$ in the 66-Year-old stand. Aboveground biomass was allocated as follows : stem> branch > foliage, except for the 9-year-old stand which had a greater proportion of foliage biomass than branch biomass. As stand age increased, an increasing proportion of annual biomass increment was allocated to stems. The aboveground biomass of shrubs and herbs ranged from 0.4 to $3.9t\;ha^{-1}$ and from 0.05 to $0.6t\;ha^{-1}$, respectively. No relationship was found between aboveground understory biomass and stand age. The mass of woody debris and forest floor varied between 0.59 to $1.54t\;ha^{-1}$ and 6.0 to $21.63t\;ha^{-1}$, respectively. Nutrient accumulation in aboveground tree biomass increased with stand age and was in the order of N > Ca > K > P > Mg. Average rates of nutrients accumulation in biomass were greatest in the early stages of stand development, and less marked as stand aged. The nutrient concentrations in different tree components decreased in the order of needle > branch > stem. There were no detectable trends in nutrient content of the forest floor and mineral soils with stand age. Understory vegetation contributed little to the nutrient pool of these Korean pine ecosystems. Mineral soil contained the Breast proportion of nutrient capital of the various ecosystem compartments.

  • PDF

Sensitivity and Self-purification Function of Forest Ecosystem to Acid Precipitation(I) - Acidification of Precipitation and Transformed Vegetation Index(TVI) - (산성우(酸性雨)에 대한 산림생태계(山林生態系)의 민감도(敏感度) 및 자정기능(自淨機能)(I) - 강우(降雨)의 산성화도(酸性化度)와 식생(植生) 활력도(活力度)(TVI)를 중심(中心)으로 -)

  • Lee, Soo Wook;Chang, Kwan Soon
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.460-472
    • /
    • 1994
  • This study has been conducted to give some ideas for reasonable ecological management of Taejon city and its adjacent forest ecosystem against the effect of acid rain. Rain monitoring points to analyse its components represented 1 point in industrial area, 4 points in commercial area, 4 points in residential area, and 5 points in suburban area and forest survey was done in 7 forest sites adjacent to rain monitoring points. Transformed vegetation index(TVI) based on Landsat TM data was analysed for forest area. Taejon area was seriously contaminated by air pollutants and average concentration of anions in precipitation were 20.16mg/l for $SO_4{^{2-}}$, 3.65mg/l for $NO_3{^-}$, and 3.09mg/l for $Cl^-$. Anion in precipitation were $1.09mg/m^2/month$ for $SO_4{^{2-}}$, $0.23mg/m^2/month$ for $NO_3{^-}$, and $0.20mg/m^2/month$ for $Cl^-$. Cation in precipitation were $0.14mg/m^2/month$ for $Ca^{2+}$, $0.10mg/m^2/month$ for $NH_4{^+}$, $0.08mg/m^2/month$ for $Na^+$, $0.07mg/m^2/month$ for $K^+$, and $0.08mg/m^2/month$ for $Mg^{2+}$. The region with the highest concentration of $SO_4{^{2-}}$, $NO_3{^-}$, and $Cl^-$ in rain was industrial area. $SO_4{^{2-}}$, $NO_3{^-}$, and $Cl^-$ concentrations in industrial area were 43.08, 3.88, and 3.64ppm, respectively. Forest soil showed strongly acidic ranging pH4.16-4.94. Transformed vegetation index(TVI) were 3.11 in Dangsan, 4.00 in Kyechoksan, 4.13 in Bomunsan, 4.18 in Kabhasan, 3.34 in Bongsan, 4.13 in Sikchangsan, and 4.20 in Seongchisan. Dangsan forest located near in industrial area showed the lowest TVI.

  • PDF

Total Nitrogen Distribution and Seasonal Changes in Inorganic Nitrogen at a Pinus koraiensis Stand in Kwangju-gun, Kyǒnggi-do, Korea (경기도(京畿道) 광주지방(廣州地方)의 잣나무임분(林分)에 있어서 전질소(全窒素)의 분포(分布)와 무기태(無機態) 질소(窒素)의 계절적(季節的) 변화(變化))

  • Shin, Joon Hwan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.69 no.1
    • /
    • pp.56-68
    • /
    • 1985
  • This study was conducted (1) to measure the nitrogen content of various parts of trees in a 24-year-old Pinus koraiensis plantation, providing a harvest method with the least impact on the self-serving mechanisms in the nitrogen status of the ecosystem and (2) to examine the seasonal changes in inorganic nitrogen (ammonium salt and nitrate, separately) at various soil depths and to study the self-serving mechanisms for nitrogen at the ecosystem, providing an appropriate method and season for the application of nitrogen fertilizers. The results obtained in this study were as follows; 1) Of the total nitrogen content of the total tree biomass (except for roots), nearly 61.5% was distributed in the needles, 20% in the branches, 5.5% in the stem bark, and 13% in the stem wood. Therefore, the harvest method of removing only wood parts for pulpwood production has little impact on the self-serving mechanisms of the site's nitrogen status. 2) Inorganic nitrogen concentrations decreased with increasing soil depths. The seasonal average concentration of inorganic nitrogen was highest in early spring and decreased in the following descending order; autumn, tollowed by mid-summer, and early summer. This pattern resulted from the fact that the loss of nitrate was greatly influenced by environmental factors. Thus, it was suggested that an application of active nitrogen fertilizer would be appropriate in spring.

  • PDF

Assessment on the Content of Heavy Metal in Orchard Soils in Middle Part of Korea (중부지역 과수원 토양중의 중금속 함량 평가)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • Objectives of this study were to monitor the distribution of heavy metals, to compare extractable heavy metal with total content and to investigate the relationships between soil physico-chemical properties and heavy metals in orchard soil. Sampling sites were 48 in Gyeonggi, 36 in Gangwon, 36 in Chungbuk, and 44 in Chungnam, Soils were collected farm form two depths, 0 to 20 and 20 to 40 cm (here after referred to as upper and lower layers) from March to May in 1998. Total contents of heavy metal in soils were analyzed by ICP-OES after acid digestion ($HNO_3$:HCl:$H_2O_2$) whereas extractable contents were measured after successive extraction of 0.1N-HCl, 0.05 M-EDTA, and 0.005 M-DTPA. Mercury was analysed by mercury atomizer. The average contents of Cd Cu, and Pb in the extractant with 0.1N-HCl at upper layer were 0.080, 4.23, and 3.42 mg/kg, respectively. As content in the extractant with 1N-HCl was 0.44 mg/kg, and total contents of Zn, Ni and Hg were 78.9, 16.1, and 0.052 mg/kg, respectively. The ratios of concentrations of heavy metals to threshold values (Cd 1.5, Cu 50, Pb 100, Zn 300, Ni 40, Hg 4 mg/ke in Soil Environmental Conservation Act in Korea (2001) were low in the range of $1/2.5{\sim}1/76.9$ in orchard soils. The ratios of extractable heavy metal to total content ranged $5.4{\sim}9.21%$ for Cd, $27.9{\sim}47.8%$ for Cu, $12.6{\sim}21.8$% for Pb, $15.8{\sim}20.3%$ for Zn, $5.3{\sim}6.3%$ for Ni, and $0.7{\sim}3.6%$ for Zn, respectively. Cu and Pb contents in 0.05 M-EDTA extractable solution were higher than those in the other extractable solution. Total contents of Cd, Ni and Ni in soils were negatively correlated with sand content but positively correlated with silt and clay contents. Ratios of extractable heavy metal to total content were negatively correlated with clay content but ai and Ni contents were positively correlated with soil pH, organic matter, and available phosphorous. Therefore, the orchard soil was safe because the heavy metal contents of orchard soil were very low as compared to its threshold value in the Soil Environmental Conservation Act. However, it need to consider the input of agricultural materials to the agricultural land for farming practices for assessment of heavy metals.

Effects of Antibiotics, Copper Sulfate and Probiotics Supplementation on Performance and Ammonia Emission from Slurry in Growing Pigs (사료에 대한 항생제, 황산동 및 생균제 첨가가 육성돈의 생산성 및 슬러리의 암모니아 발생에 미치는 영향)

  • Han, Y.K.;Shin, H.T.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.537-546
    • /
    • 2005
  • An experiment was conducted to determine the effect of supplementation of chlortetracycline (CTC,110ppm), copper sulfate(Cu, 125ppm) and two levels of probiotics(Prob I, 0.04%, Prob II, 0.1%), Bacillus licheniformis and Bacillus subtilis) on growth performance, nutrient digestibility and manure characteristics in growing pigs. A total of 50 pigs that averaged 20.78$\pm$0.35kg BW and 50$\pm$2.3d age were allocated in a randomized block design with two pigs per pen and 5 pens per treatment. Pigs and feeders were weighed 10-days interval for the 40-d trials to determine ADG, ADFI and feed:gain ratio(F:G). Average daily gain, feed intake, feed/gain and nutrient digestibility were not improved(P>0.10) by the supplementation of CTC, Cu and two levels of probiotics. There were significant(P<0.05) Cu effects on digestibility of crude protein, and probiotics effects on digestibilities on organic matter, crude protein and energy between first 20 days and subsequent 20 days. Fecal concentrations of copper were highly increased(P<0.001) by the copper supplementation. Total bacteria and coliform counts were not altered by the supplementation of CTC, Cu and two levels of probiotics. Ammonia emission from slurry, measured during first 3 weeks, was reduced (P<0.001) in pigs fed diet with 125 ppm copper from copper sulfate. Results indicate that CTC, Cu and Probiotics supplementation had a little or not positive effect on grower pig performance under sound environmental conditions. Further studies may be warranted to investigate the effects of dietary copper-either reduced or in combination with dietary ammonia control agents-on the ammonia emission characteristics of swine manure.