• Title/Summary/Keyword: Avalanche Photodiode

Search Result 42, Processing Time 0.028 seconds

A new analysis on timing jitters in APD receivers of optical communication systems when considering intersymbol interferences (APD를 사용하는 광통신 시스템 수신기에서 심벌간 간섭을 고려할 경우 타이밍 지터에 대한 새로운 해석)

  • 신요안;은수정;김부균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.539-546
    • /
    • 1997
  • In this paper, we proposed a new mehtod to analyze the performance degradation by timing jitters in the APD (avalanche photodiode) receivers of intensity modulation/direct detection digital optical communication systems where raised cosine pulse-shaping filters are used to reduce the effect of noise while minimizing intersymbol interferences. The proposed analytical method is an extension of an analytical method we have already developed for pin diode receivers, and incorporates the effects of APD's multiplication factor and resulting shot noise. Using the proposed analytical method, we derive an approximated power penalty due to timing jitters based on an assumption of Gaussian distribution for timing jitters, and compare with that of the conventional analytical method. The results obtained from the proposed analytical method show that conventional analytical methods underestimate the influence of timing jitters on the reciver performance. The results also show that APD's multiplication factor which optimizes receiver sensitivity is smaller than that obtained by the conventional analytical method.

  • PDF

A Study on Parallel Interconnection between Photodiodes and Fibers using Si V-groove (Si V-groove를 이용한 광다이오드(PD)와 광섬유의 병렬연결에 관한 연구)

  • Lee, W.;You, B.A.;Kim, S.C.;Lee, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.439-441
    • /
    • 1996
  • A simple coupling method between APD(avalanche photodiode) arrays and SMF(single mode fiber) arrays on a Silicon carrier composed of V-grooves is proposed and carried out. Jacketed fibers embedded in V-grooves are used as alignment marks instead of patterned pedestals or solder bumps and a optical receiver module are packaged.

  • PDF

I-V Characteristics of SAGCM APD by Varing Guard-Ring Depth (SAGCM APD 에서의 가드링 형태에 따른 I-V 특성 연구)

  • 현경숙;백영미
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.100-101
    • /
    • 2003
  • 본 논문은 초고속 광통신용 검출기로 사용되고 있는 InP/InGaAs Avalanche Photodiode (APD)에 대한 연구로서 구조 변화에 따른 APD의 특성에 대해 연구하였다. 채택된 APB의 기본 구조는 Separated Absorption, Grading, Charge and Multiplication (SAGCM)구조로 u-InP 의 두께 3.5$\mu\textrm{m}$에~2.9$\mu\textrm{m}$ 만큼 Zn diffusion 하였으며, u-InGaAs 의 흡수층 두께는 0.8$\mu\textrm{m}$ 로 하였다. charge sheet 층의 도핑 농도는 ~ 3.5 $\times$ 10/sup 12//cm/sup 2/ 이고, 전극 구조는 back side illumination type이다. (중략)

  • PDF

Performance Evaluation of Underwater Optical Wireless Communication Depending on the Modulation Scheme

  • Jeong, Gabin;Kim, Sung-Man
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.39-43
    • /
    • 2022
  • Underwater optical wireless communication (UOWC) is a good candidate for high-speed underwater wireless communication. In this work, we compare the performance of several modulation techniques for a UOWC system consisting of a light-emitting diode (LED) with an operating wavelength of 405 nm and a Si avalanche photodiode (APD). In this work, we consider six modulation schemes: 4-quadrature amplitude modulation (QAM), 8-QAM, quadrature phase shift keying (QPSK), binary phase shift keying (BPSK), on-off keying (OOK), and 4-pulse amplitude modulation (PAM). We also consider the cases of pure water and seawater for the working conditions. Our results show that 4-QAM and 8-QAM perform the best, in terms of communication distance and transmission power efficiency, for all water types considered.

Characterization of New Avalanche Photodiode Arrays for Positron Emission Tomography

  • Song, Tae-Yong;Park, Yong;Chung, Yong-Hyun;Jung, Jin-Ho;Jeong, Myung-Hwan;Min, Byung-Jun;Hong, Key-Jo;Choe, Yearn-Seong;Lee, Kyung-Han
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.45-45
    • /
    • 2003
  • The aim of this study was the characterization and performance validation of new prototype avalanche photodiode (APD) arrays for positron emission tomography (PET). Two different APD array prototypes (noted A and B) developed by Radiation Monitoring Device (RMD) have been investigated. Principal characteristics of the two APD array were measured and compared. In order to characterize and evaluate the APD performance, capacitance, doping concentration, quantum efficiency, gain and dark current were measured. The doping concentration that shows the impurity distribution within an APD pixel as a function of depth was derived from the relationship between capacitance and bias voltage. Quantum efficiency was measured using a mercury vapor light source and a monochromator used to select a wavelength within the range of 300 to 700 nm. Quantum efficiency measurements were done at 500 V, for which the APD gain is equal to one. For the gain measurements, a pencil beam with 450 nm in wavelength was illuminating the center of each pixel. The APD dark currents were measured as a function of gain and bias. A linear fitting method was used to determine the value of surface and bulk leakage currents. Mean quantum efficiencies measured at 400 and 450 nm were 0.41 and 0.54, for array A, and 0.50 and 0.65 for array B. Mean gain at a bias voltage of 1700 V, was 617.6 for array A and 515.7 for type B. The values based on linear fitting were 0.08${\pm}$0.02 nA 38.40${\pm}$6.26 nA, 0.08${\pm}$0.0l nA 36.87${\pm}$5.19 nA, and 0.05${\pm}$0.00 nA, 21.80${\pm}$1.30 nA in bulk surface leakage current for array A and B respectively. Results of characterization demonstrate the importance of performance measurement validating the capability of APD array as the detector for PET imaging.

  • PDF

Repeaterless Transmission of 2.5Gbps Signal Over 98Km Optical Fibers (2.5 Gbps 신호의 98km 무중계 광섬유 전송)

  • 윤태열;한정희;이창희;심창섭
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.26-38
    • /
    • 1994
  • We demonstrate a repeatless transmission of 2.5 Gbps digital signal over 98 km opticla filbers using optical transmitter and optcial receiver which are designed and implemented using commercially available devices. The optical transmitter is realized by using a distributed feedback(DFB) laser. Temperature of the laser is thermoelectrically stabilized and the output optical power is also stabilized by using negative feedback. The output power of the transmitter is 0 dBm. The optical receiver consists of an InGaAs avalanche photodiode, a preamplifier. an automatic gain control amplifier, and a clock/data regenerator. We find an optimum decision threshold that gives the best receiver sensitivity form the measured V curve. The best sensitivity is -35.5dBm( BER-1*10S010T, PRBS=2S023T -1 ) and the overload power is -9 dBm. Finally, we achieve error free optical transmission with 98 km optical fibers. The exinction ration penalty of 2 dB. the chromatic dispersion penalty of 1 dB, and the total power penalty of 3.0 dB are measured. These results satisfy CCITT recommendation.

  • PDF

Measurements of Diameter Variation in Optical Fiber-Core. (광섬유 코어 Diameter-Variation 측정에 관한 연구)

  • 유봉선;이호준;원동호;박병철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.4
    • /
    • pp.335-346
    • /
    • 1987
  • The principal reason for the backscattering in an optical fiber is the Rayleigh scattering which is caused by non-uniform density of structure material of an optical fiber and diameter variations of the optical fiber-core along an optical fiber axis. The backscattering signal which is detected by the optical time domain reflectometer system(O.T.D.R) conatains information about both tha actual decay of power and the diameter variation along the optical fiber. In this paper, the O.T.D.R. system with 2x2 fiber directional coupler, timing control unit and gated integrator is used to measure diameter variations of an optical fiber.

  • PDF

Development of Signal Process Circuit for PSAPD Detector (위치민감형 광다이오드 검출기의 신호처리회로 개발과 적용)

  • Yoon, Do-Kun;Lee, Won-Ho
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.315-319
    • /
    • 2012
  • The aim of this study was to develop a signal process circuit for a position sensitive avalanche photodiode detector. The circuit parts consisted of amplification, differential and peak/hold circuit. This research was the baseline to develop highly compact radiation detector. The signal was amplified by an amplification chip and its shape was changed in a differential circuit to minimize the pulse tailing. The peak/hold circuit detect the peak of the signal from the differential circuit and hold the amplitude of the peak for data acquisition. In order to test the intrinsic function of the circuit, the input signal was transmitted from a commercial pulse generator.

Physical Media Dependent Prototype for 10-Gigabit-Capable PON OLT

  • Kim, Jongdeog;Lee, Jong Jin;Lee, Seihyoung;Kim, Young-Sun
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.245-252
    • /
    • 2013
  • In this work, we study the physical layer solutions for 10-gigabit-capable passive optical networks (PONs), particularly for an optical link terminal (OLT) including a 10-Gbit/s electroabsorption modulated laser (EML) and a 2.5-Gbit/s burst mode receiver (BM-Rx) in a novel bidirectional optical subassembly (BOSA). As unique features, a bidirectional mini-flat package and a 9-pin TO package are developed for a 10-gigabit-capable PON OLT BOSA composed of a 1,577-nm EML and a 1,270-nm avalanche photodiode BM-Rx, including a single-chip burst mode integrated circuit that is integrated with a transimpedance and limiting amplifier. In the developed prototype, the 10-Gbit/s transmitter and 2.5-Gbit/s receiver characteristics are evaluated and compared with the physical media dependent (PMD) specifications in ITU-T G.987.2 for XG-PON1. By conducting the 10-Gbit/s downstream and 2.5-Gbit/s upstream transmission experiments, we verify that the developed 10-gigabitcapable PON PMD prototype can operate for extended network coverage of up to a 40-km fiber reach.

Evaluation of a Laser Altimeter using the Pseudo-Random Noise Modulation Technique for Apophis Mission

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Choi, Mansoo;Park, Jong Uk;Choi, Chul-Sung;Bang, Seong-Cheol;Choi, Young-Jun;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.165-173
    • /
    • 2021
  • Apophis is a near-Earth object with a diameter of approximately 340 m, which will come closer to the Earth than a geostationary orbit in 2029, offering a unique opportunity for characterizing the object during the upcoming encounter. Therefore, Korea Astronomy and Space Science Institute has a plan to propose a space mission to explore the Apophis asteroid using scientific instruments such as a laser altimeter. In this study, we evaluate the performance metrics of a laser altimeter using a pseudorandom noise modulation technique for the Apophis mission, in terms of detection probability and ranging accuracy. The closed-form expression of detection probability is provided using the cross correlation between the received pulse trains and pseudo-random binary sequence. And the new ranging accuracy model using Gaussian error propagation is also derived by considering the sampling rate. The operation range is significantly limited by thermal noise rather than background noise, owing to not only the low power laser but also the avalanche photodiode in the analog mode operation. However, it is demonstrated from the numerical simulation that the laser altimeter can achieve the ranging performance required for a proximity operation mode, which employs commercially available components onboard CubeSat-scale satellites for optical communications.