• Title/Summary/Keyword: Available transfer capability

Search Result 54, Processing Time 0.047 seconds

Study for Increment Method of ATC (Available Transfer Capability) (가용 송전 능력(Available Transfer Capability : ATC)의 증대 방안에 대한 연구)

  • Lee, Y.H.;Baek, Y.S.;Song, K.B.;Chu, J.B.;Won, J.R.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.55-57
    • /
    • 2001
  • In this paper, algorithm for increment of ATC is proposed. ATC of the power transfer system is determined by the smallest ATC among transmission lines' in the power transfer system. So power flow of that transmission line shall be decreased to increase ATC, using the redistribution of each generation power with liner programing method. By the studying example case, $10\sim20%$ increment of ATC is confirmed in the power transfer system.

  • PDF

A Study on The Available Transfer Capability(ATC) with Transient Stability Constraints (과도 안정도를 고려한 가용송전용량(ATC) 계산에 관한 연구)

  • Kim, Yang-Il;Jeong, Sung-Won;Gim, Jae-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.437-443
    • /
    • 2009
  • In recent years, electric power systems have been experiencing a rapid change due to the increasing electricity market. For the effective use of power system under the deregulated environment, it is important to make a fast and accurate calculation of the maximum available transfer capability (ATC) from a supply point to a demand point. In this paper, the purpose of this research is to calculate ATC fast and accurately for securing the stability of system and raising the efficiency as a result of anticipating transmission congestion according to transmission open access progressed in the future under the regulated environment of electricity market. In this paper, a study utilized a relation of the potential energy and energy function by which calculated CCT and then utilized a relation of PEBS for transient stability ATC calculation. In this paper, ATC was calculated as RPF and Energy Function method and calculation results of each method was compared. Contingence ranking method decided the weak bus by the Eigenvalues of Jacobian matrix and overloading branches by PI-index. As a result, a study proved the fast and accurate ATC calculation method considering transient stability suggested in this paper. Through the case study using New England 39 bus system, it is confirmed that the proposed method can be used for real time operation and the planning of electric market.

A study on the ATC(Available Transfer Capabilily) calculation using an Energy Function Method (에너지함수법을 이용한 가용송전용량(ATC) 계산에 관한 연구)

  • Kim, Jae-Hyeon;Jeong, Sung-Won;Kim, Yong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.94-100
    • /
    • 2008
  • Available transfer capability(ATC) quantifies the viable increase in real power transfer from one point to another in a power system. ATC calculation has predominantly focussed on steady-state viability. But ATC assessment with transient stability constraints has a dominant part in overall ATC calculation. ATC assessment requires a reputation of (n-1) security assessment with constraints of thermal limits, voltage stability and dynamic stability. An estimation of determinant contingency screening method is used for computing eigenvalue of Jacobian matrix. This paper proposed a methods to ATC calculation using energy function. Constraints is used thermal limits, voltage stability and transient stability.

Evaluation of Optimal Transfer Capability in Power System Interconnection (연계된 계통간의 최적 송전 용량 산정)

  • Son, Hyun-Il;Bae, In-Su;Jeon, Dong-Hoon;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.679-685
    • /
    • 2010
  • As the electrical power industry is restructured, the electrical power exchange is becoming extended. One of the key information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). To calculate ATC, traditional deterministic approach is based on the severest case, but the approach has the complexity of procedure. Therefore, novel approach for ATC calculation is proposed using cost-optimization method, well-being method and risk-benefit method in this paper. This paper proposes the optimal transfer capability of HVDC system between mainland and a separated island in Korea through these three methods. These methods will consider production cost, wheeling charge through HVDC system and outage cost with one depth (N-1 contingency).

Assessment of Total Transfer Capability Based on Energy Function (에너지 함수를 이용한 총송전용량 평가)

  • Kim, Kyu-Ho;Kim, Soo-Nam;Rhee, Sang-Bong;Lee, Sang-Keun;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.241_242
    • /
    • 2009
  • This paper presents a method to assess total transfer capability (TTC) by using energy function. To get the critical energy, the potential energy boundary surface(PEBS) method which is one of the transient energy function(TEF) method is used. TTC assessment is to calculate TTC by using the repeated power flow (RPF) method. It is seen that energy margin can be use to assess available transfer capability(ATC).

  • PDF

Evaluation of Optimal Transfer Capability in Power System interconnection (연계된 계통간의 최적 송전용량 산정)

  • Son, Hyun-Il;Choi, Ah-Reum;Lee, Sung-Hoon;Kim, Jin-O;Jeon, Dong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.195_196
    • /
    • 2009
  • As the electrical power industry is restructured, the electrical power exchange is becoming extended. One of the key information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). To calculate ATC, traditional deterministic approach is based on the severest case, but the approach has the complexity of procedure. Therefore, novel approach for ATC calculation is proposed using cost-optimization method in this paper, and is compared with well-being method and risk-benefit method. This paper proposes the optimal transfer capability of HVDC system between mainland and a separated island in Korea through these three methods. These methods will consider production cost, wheeling charge through HVDC system and outage cost with one depth (N-1 contingency).

  • PDF

A Study on the Available Transfer Capability(ATC) Using PSO Algorithm (PSO 알고리즘을 이용한 가용송전용량에 관한 연구)

  • Chyun, Yi-Kyung;Kim, Mun-Kyeom;Lyu, Jae-Kun;Noh, Jun-Woo;Shim, Jae-Seong;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.34_35
    • /
    • 2009
  • 본 논문에서는 Particle Swarm Optimization(PSO) 알고리즘을 이용한 최적조류계산(Optimal Power Flow: OPF)을 가용송전용량(Available Transfer Capability: ATC) 계산에 적용하였다. 제안한 방법의 우수성을 입증하기 위하여 IEEE 30모선 계통에 적용해 보고, 그 결과로부터 가용송전용량 계산에 PSO 알고리즘의 적용가능성을 증명하였다.

  • PDF

Development of Available Transfer Capability Expansion Algorithm Considering Generation Cost (발전비용을 고려한 가용 송전 능력(ATC) 증대 알고리즘 개발)

  • Lee, Y.H.;Baek, Y.S.;Song, K.B.;Chu, J.B.;Won, J.R.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.302-304
    • /
    • 2001
  • 계통의 최적 조류 계산(Optimal Power Flow)을 수행한 후, 계통 전체의 ATC(Available Transfer Capability)를 구한다. 이때 계통 전체의 ATC는 어느 특정한 선로의 ATC 값으로 결정되는데, 이 선로의 전력 조류량을 조금만 줄여도 전체 계통의 ATC가 크게 증가하게 되는 경우가 많다. 따라서 본 논문에서는 계통 전체의 ATC 증대를 위하여, ATC를 제한하게 되는 관심 선로의 조류에 각각의 발전기가 미치는 민감도와 각각의 발전기의 발전비용 함수를 동시에 고려한 최적의 발전력 재분배를 통하여 발전비용의 증가와 관심 선로의 전력 조류감소 효과의 최적화를 위하여 Liner Programing 기법을 이용한다.

  • PDF

A Study on the Enhancement of Available Transfer Capability Using the Flexible AC Transmission System (FACTS)

  • Gim, Jae-Hyeon;Kim, Yang-Il;Jeung, Sung-Won
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.192-200
    • /
    • 2004
  • This paper evaluates FACTS control on the available transfer capability (ATC) enhancement. Technical merits of FACTS technology on boosting ATC are analyzed. More effective control means for line flow and bus voltage require the application of FACTS. In this paper, the power flow calculation method for the power systems with FACTS is based on the current injection model (CIM) and the Newton-Raphson method. An integrated scheme for ATC calculation, which considers the dynamic characteristic of the power system, is suggested. The study is applied to the IEEE 57-bus power system to demonstrate the effectiveness of FACTS control on ATC enhancement.

A Study on Enhancement Available Transfer Capability Using Flexible AC Transmission System (FACTS) (FACTS를 이용한 지역간 융통전력 증대방안에 관한 연구)

  • 김양일;정성원;기경현;김재현
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.446-453
    • /
    • 2004
  • This paper focuses on the evaluation of FACTS control on available transfer capability(ATC) enhancement. Technical merit of FACTS technology on ATC boosting are analyzed. More effective control means for line flow and bus voltage are required for appling FACTS. In this paper, the power flow calculation method for deriving FACTS control parameters based on current injection model(CIM) and newton method. Integrated scheme for ATC calculation considering dynamic characteristic of power system is suggested. Study is based on the IEEE 57-bus system demonstrate the effectiveness of FACTS control on ATC enhancement.