• Title/Summary/Keyword: Auxiliary Power System (APS)

Search Result 5, Processing Time 0.019 seconds

Research on High-Efficient Power Converters Using WBG Devices for Auxiliary Power Supplies (APS) System (WBG 소자를 적용한 보조전원장치의 고효율, 경량화 연구)

  • Cho, In-Ho;Lee, Jae-Bum
    • Journal of Advanced Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.203-208
    • /
    • 2017
  • Due to global climate change issues, there is a growing demand for systems throughout the industry. In the case of power conversion, studies have been actively conducted to change the structure of the power conversion circuit and to apply new power devices. In particular, the WBG (Wide Band Gap), which is newly emerged device in the market for developing semiconductor technology, has demonstrated advantages in applying for various aspects in comparison to the existing Si (Silicon) Semiconductor. Recent research centers in the railway industry are focusing on developing technologies suitable for railway vehicles by utilizing these new developments in railway countries such as Japan and Europe. This paper researches the WBG device that is applicable to the auxiliary power supplies (APS) in railway system, and analyzes the downsizing effects to APS in high-speed railway by conducting a theoretical analysis and simulation.

A Study on the Auxiliary Power Supply for the Railway Vehicle by Using Wide Band Gap Device (Wide Band Gap 소자를 적용한 철도차량용 보조전원장치에 관한 연구)

  • Choi, Yeon-Woo;Lee, Byoung-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.168-173
    • /
    • 2018
  • In this paper, an auxiliary power supply (APS) for railroad cars is proposed. The APS can reduce the number of devices required to supply power through structural modification and operates at a high switching frequency by application of a SiC device. The voltage stress on the device in the proposed circuit can be reduced to less than half of the input voltage of the system; thus, a device with low breakdown voltage can be designed. By adapting a SiC device instead of an IGBT device, the proposed circuit can reduce switching and conduction losses and operate at a high switching frequency, thereby reducing output voltage and inductor current ripples in the proposed circuit. The theoretical analysis results of the proposed APS are verified with a 40 kW computer-based simulation and a 2 kW experiment.

Research on High-Efficiency Power Conversion Structure for Railroad Auxiliary Power Supply(APS) System (철도차량 보조전원장치의 효율향상을 위한 새로운 전력변환회로 구조 연구)

  • Cho, In-Ho;Jung, Shin-Myung;Lee, Byoung-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.297-303
    • /
    • 2016
  • This paper introduces auxiliary power supply systems (APS) for railroad applications and proposes a new power conversion structure for highly-efficient and lightweight APS systems. The proposed structure focuses on an improvement of the power density in APS. It eliminates unnecessary power conversion stages in the conventional APS structure by modulating the dc/dc converter circuit and the structure of the system. The dc/dc converter circuit used in the proposed structure is based on a multi-level half-bridge converter, a widely used topology in railroad APS applications; a flying capacitor is newly added to the conventional circuit. The added capacitor is used not only to enhance the soft switching condition of the switches, but also so that the new pantograph will have a side voltage source of a battery charger in the APS structure. Since the battery charger uses the pantograph side voltage source in the proposed structure, rather than using the output of the main dc/dc converter in the conventional structure, the size and efficiency of the main dc/dc converter are reduced and increased, respectively. To verify the effectiveness of the proposed structure, simulation results will be presented with metropolitan transit APS specifications.

Research on Power Converters for High-Efficient and Light-Weight Auxiliary Power Supplies (APS) in Railway System (철도차량 보조전원장치의 고효율-경량화를 위한 전력변환회로 연구)

  • Lee, Jae-Bum;Cho, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2017
  • A recent trend of technical development in auxiliary-power-supplies (APS) is to replace 60Hz low frequency transformers with isolated type dc/dc converters. This paper introduces the technical trend in APS structures and proposes a power converter circuit suitable for high-efficient and light-weight APS. By utilizing the resonant converter, which achieves ZCS, to reduce switching losses, various types of APS structures (1-stage and 2-stage) are reviewed, and they are verified by simulation. The full-bridge resonant LLC converter is designed with a 1-stage power converting structure; the resonant converter topology is designed with a 2-stage power converting structure that has a pre-regulator converter to compensate for the wide input voltage range. Both a step-down converter and a step-up converter are designed and compared for the pre-regulator in the 2-stage structure. Operational characteristics are compared with simulation results and loss analyses are presented to proposes appropriate system structure and topologies.

Humidification model and heat/water balancing method of PEMFC system for automotive applications (자동차용 연료전지 시스템의 가습모델과 열/물균형 유지방법)

  • Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.339-344
    • /
    • 2005
  • A PEMFC system model for FCEV was constructed and simulated numerically to examine the heat/water flow of the system and air/fuel humidification process for various operation conditions (ambient pressure /temperature/humidity, operating temperature, power load). We modeled PEMFC stack which can generate maximum electricity of about 80 kW. This stack consists of 400 unit cells and each unit cell has $250cm^2$ reacting area. Uniform current density and uniform operating voltage per each cell was assumed. The results show the flow characteristics of heat and water at each component of PEMFC system in macro-scale. The capacity shortage of the radiator occurred when the ambient was hot $(over\;40^{\circ}C)$ and power level was high (over 50 kW). In spite of some heat release by evaporation of water in stack, heat unbalance reached to 20kW approximately in such a severe operating condition. This heat unbalance could be recovered by auxiliary radiators or high speed cooling fan with additional cost. In cold environment, the capacity of radiator exceeded the net heat generation to be released, which may cause a problem to drop the operating temperature of stack. We dealt with this problem by regulating mass flow rate of coolant and radiator fan speed. Finally, water balance was not easily broken when we retrieved condensed and/or unused water.

  • PDF