• 제목/요약/키워드: Autonomous system

검색결과 2,447건 처리시간 0.028초

지능형 자율운항제어를 위한 선박운동제어시스템 (A Ship Motion Control System for Autonomous Navigation)

  • 이원호;김창민;최중락;김용기
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제9권6호
    • /
    • pp.674-682
    • /
    • 2003
  • 선박 자율운항시스템(autonomous navigation system)이란 선박운항에 있어 항해계획을 수립하고 현재의 선박운항 상태를 파악하여 주변 상황변화를 예측하고 대처하는 항해 전문가의 능력을 전산화한 것이다. 선박 자율운항시스템은 항해, 충돌회피, 선체유지, 자료융합, 운동제어 그리고 이를 통합하는 아키텍처로 구성되어 있다. 운동제어시스템은 선박의 유체학적 특성을 고려하여 해도 상에 원하는 위치로 선박을 이동하기 위해서 추진 및 조타장치를 제어하는 시스템으로 자율운항제어시스템에 필수적인 구성 시스템 중에 하나이다. 본 논문은 운영플랫폼인 가상세계시스템을 기반으로 운영되는 선박자율운항시스템과 운동제어시스템의 연동과 구현에 관한 연구이다. 운동제어시스템은 충돌회피시스템으로부터 상위 레벨의 고수준제어 요구치를 전달받아 조타 및 추진치로 변환하고 조타장치와 추진장치를 제어하는 시스템이다. 본 논문에서 선박 운동 특성을 수학적으로 모방하는 Oldenburger의 제어 이론에 기반하여 선박운동제어기를 개발하고 성능검정을 위해 선박시뮬레이터에서 다양한 시나리오를 바탕으로 시뮬레이션 한다.

완전자율주행자동차의 운행 안전성 보장 제고 방안 - 독일 도로교통법 및 일본 도로교통법 개정 사항을 중심으로 (A Study for Improving Driving Safety Assurance for Fully Autonomous Vehicles - Focusing on Amendments of the German Road Traffic Act and the Japanese Road Traffic Act)

  • 박경신
    • 자동차안전학회지
    • /
    • 제15권1호
    • /
    • pp.45-54
    • /
    • 2023
  • In the commercialization stage of level 4 or higher autonomous driving, the need for new legal system related to drive safely has increased in order to meet the improved level of technological development. Especially human drivers should not be legally accountable for road safety in the era of autonomous vehicles and thus safety standards for operation of autonomous vehicles are significant. To address this issue, the German Road Traffic Act was revised in 2021, adding provisions corresponding to the commercialization of self-driving vehicle of level 4 and in the similar context the Japanese Road Traffic Ac was amended in 2022. This Article draws implications for legislative discussions on driving-related responsibilities of driverless autonomous vehicle to ensure driving safety in Korea through recent amendments in Germany and Japan.

홀로닉 생산시스템을 위한 일정계획 모델

  • 이용수;이영해;전성진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.701-706
    • /
    • 1994
  • Holonic manufacturing system is a new approachto the organization and architecture of decentralized, autonomous and cooperative manufacturing system. The new paradigm combines the concepts of hierarchical systems and the integration of autonomous elements in distributed system. Today's scheduling and control techniques are mostly based on a centralized structure. Only little work has been done on scheduling and control of decentralized, autonomous and cooperative manufacturing system. This paper proposes a new approach IPM(Interactive Prediction Method) for scheduling and control of holonic manufacturing system.

  • PDF

Tunnel lane-positioning system for autonomous driving cars using LED chromaticity and fuzzy logic system

  • Jeong, Jae-Hoon;Byun, Gi-Sig;Park, Kiwon
    • ETRI Journal
    • /
    • 제41권4호
    • /
    • pp.506-514
    • /
    • 2019
  • Currently, studies on autonomous driving are being actively conducted. Vehicle positioning techniques are very important in the autonomous driving area. Currently, the global positioning system (GPS) is the most widely used technology for vehicle positioning. Although technologies such as the inertial navigation system and vision are used in combination with GPS to enhance precision, there is a limitation in measuring the lane and position in shaded areas of GPS, like tunnels. To solve such problems, this paper presents the use of LED lighting for position estimation in GPS shadow areas. This paper presents simulations in the environment of three-lane tunnels with LEDs of different color temperatures, and the results show that position estimation is possible by the analyzing chromaticity of LED lights. To improve the precision of positioning, a fuzzy logic system is added to the location function in the literature [1]. The experimental results showed that the average error was 0.0619 cm, and verify that the performance of developed position estimation system is viable compared with previous works.

무인 자율 주행 지게차 구현을 위한 네트워크 기반 분산 접근 방법 (Network-based Distributed Approach for Implementation of an Unmanned Autonomous Forklift)

  • 송영훈;박지훈;이경창;이석
    • 제어로봇시스템학회논문지
    • /
    • 제16권9호
    • /
    • pp.898-904
    • /
    • 2010
  • Unmanned autonomous forklifts have a great potential to enhance the productivity of material handling in various applications because these forklifts can pick up and deliver loads without an operator and any fixed guide. There are, however, many technical difficulties in developing such forklifts including localization, map building, sensor fusion, control and so on. Implementation, which is often neglected, is one of practical issues in developing such an autonomous device. This is because the system requires numerous sensors, actuators, and controllers that need to be connected with each other, and the number of connections grows very rapidly as the number of devices grows. Another requirement on the integration is that the system should allow changes in the system design so that modification and addition of system components can be accommodated without too much effort. This paper presents a network-based distributed approach where system components are connected to a shared CAN network, and control functions are divided into small tasks that are distributed over a number of microcontrollers with a limited computing capacity. This approach is successfully applied to develop an unmanned forklift.

Autonomous guidance Using Ultrasonic Sensors for a Small Orchard Sprayer

  • Shin, Beom-Soo;Kim, Sang-Hun;Koo, Young-Mo
    • Agricultural and Biosystems Engineering
    • /
    • 제2권2호
    • /
    • pp.50-58
    • /
    • 2001
  • Chemical application is very hazardous in confined spaces under the canopy ceiling in Korean vineyard. For a small orchard sprayer adaptable to such a working condition, a low-cost autonomous steering control system was developed using two ultrasonic sensors, two electrically-operated cylinders and 80196kc microprocessor. A distance ranging system timed the round-trip for each ultrasonic wave to travel against parallel targets, placed every 1.5m spacing along both sides of a desired path. A steering control algorithm of the autonomous operation began with ranging left and right targets and the heading was decided using difference between the distances. Electrically-operated cylinders actuated steering clutches to guide the sprayer. Evaluation tests showed that the orchard sprayer could travel within RMS value of 5cm along the desired path. Ground speed did not affect the performance of the autonomous guidance system at the speed ranges of 0.29~0.52m/sec.

  • PDF

자율분사협조형 시스템에 있어서의 자율형 AGV를 위한 경로계획에 관한 응용연구 (A study on path planning for autonomous AGV in an autonomous distributed & cooperated system)

  • 임재국
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1996년도 추계학술대회발표논문집; 고려대학교, 서울; 26 Oct. 1996
    • /
    • pp.99-102
    • /
    • 1996
  • Research regarding the Autonomous Distributed & Cooperated System has not yet been defined because we need to apply the interdisciplinary approach before so. In this paper, we use a clear definition, compare characteristics of the Autonomous Distributed & Cooperated System and examine the possibility of an actualization through path planning of Autonomous AGV. We propose a new algorithm about the generation method of a moving path at the first stage and a cooperative action generation for a collision avoidance. Lastly, we performed simulation analysis of these two in order to confirm efficiency.

  • PDF

Position Recognition System for Autonomous Vehicle Using the Symmetric Magnetic Field

  • Kim, Eun-Ju;Kim, Eui-Sun;Lim, Young-Cheol
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.111-117
    • /
    • 2013
  • The autonomous driving method using magnetic sensors recognizes the position by measuring magnetic fields in autonomous robots or vehicles after installing magnetic markers in a moving path. The Position estimate method using magnetic sensors has an advantage of being affected less by variation of driving environment such as oil, water and dust due to the use of magnetic field. It also has the advantages that we can use the magnet as an indicator and there is no consideration for power and communication environment. In this paper, we propose an efficient sensor system for an autonomous driving vehicle supplemented for existing disadvantage. In order to efficiently eliminate geomagnetism, we analyze the components of the horizontal and vertical magnetic field. We propose an algorithm for position estimation and geomagnetic elimination to ease analysis, and also propose an initialization method for sensor applied in the vehicle. We measured and analyzed the developed system in various environments, and we verify the advantages of proposed methods.

자율주행을 위한 라이다 기반의 실시간 그라운드 세그멘테이션 알고리즘 (LiDAR based Real-time Ground Segmentation Algorithm for Autonomous Driving)

  • 이아영;이경수
    • 자동차안전학회지
    • /
    • 제14권2호
    • /
    • pp.51-56
    • /
    • 2022
  • This paper presents an Ground Segmentation algorithm to eliminate unnecessary Lidar Point Cloud Data (PCD) in an autonomous driving system. We consider Random Sample Consensus (Ransac) Algorithm to process lidar ground data. Ransac designates inlier and outlier to erase ground point cloud and classified PCD into two parts. Test results show removal of PCD from ground area by distinguishing inlier and outlier. The paper validates ground rejection algorithm in real time calculating the number of objects recognized by ground data compared to lidar raw data and ground segmented data based on the z-axis. Ground Segmentation is simulated by Robot Operating System (ROS) and an analysis of autonomous driving data is constructed by Matlab. The proposed algorithm can enhance performance of autonomous driving as misrecognizing circumstances are reduced.