• 제목/요약/키워드: Autonomous surface robot

검색결과 34건 처리시간 0.021초

부이기반 자율형 수상로봇키트 개발 (Development of Buoy-based Autonomous Surface Robot-kit)

  • 김현식
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.249-254
    • /
    • 2015
  • Buoys are widely used in marine areas because they can mark positions and simultaneously acquire and exchange underwater, surface, and airborne information. Recently, the need for controlling and optimizing a buoy's position and attitude has been raised to achieve successful communication in a heterogeneous collaborative network composed of an underwater robot, a surface robot, and an airborne robot. A buoy in the form of a marine robot would be ideal to address this issue, as it can serve as a moving node of the communication network. Therefore, a buoy-based autonomous surface robot-kit with the abilities of sonar-based avoidance, dynamic position control, and static attitude control was developed and is discussed in this paper. The test and evaluation results of this kit show the possibility of real-world applications and the need for additional studies.

해양 소방 안전을 위한 자율수상로봇 개발 (Development of Autonomous Surface Robot for Marine Fire Safety)

  • 정진석;사영민;김현식
    • 한국해양공학회지
    • /
    • 제32권2호
    • /
    • pp.138-142
    • /
    • 2018
  • The marine industry is rapidly developing as a result of the increase in various needs in the marine environment. In addition, accidents involving ship fires and explosions and the resulting casualties are increasing. Generally, manpower and safety problems exist in fire fighting. A fire fighter in the form of an autonomous surface robot would be ideal for marine fire safety, because it has no manpower and safety problems. Therefore, an autonomous surface robot with the abilities of fire recognition and tracking, nozzle selection, position and attitude control, and fire fighting was developed and is discussed in this paper. The test and evaluation results of this robot showed the possibility of real-size applications and the need for additional studies.

청소로봇의 최적비용함수를 고려한 지도 작성에 관한 연구 (A Study on the Map-Building of a Cleaning Robot Base upon the Optimal Cost Function)

  • 강진구
    • 디지털산업정보학회논문지
    • /
    • 제5권3호
    • /
    • pp.39-45
    • /
    • 2009
  • In this paper we present a cleaning robot system for an autonomous mobile robot. Our robot performs goal reaching tasks into unknown indoor environments by using sensor fusion. The robot's operation objective is to clean floor or any other applicable surface and to build a map of the surrounding environment for some further purpose such as finding the shortest path available. Using its cleaning robot system for an autonomous mobile robot can move in various modes and perform dexterous tasks. Performance of the cleaning robot system is better than a fixed base redundant robot in avoiding singularity and obstacle. Sensor fusion using the clean robot improves the performance of the robot with redundant freedom in workspace and Map-Building. In this paper, Map-building of the cleaning robot has been studied using sensor fusion. A sequence of this alternating task execution scheme enables the clean robot to execute various tasks efficiently. The proposed algorithm is experimentally verified and discussed with a cleaning robot, KCCR.

레이저-비전 센서를 이용한 Autonomous Robot Kinematic Calibration (Autonomous Robot Kinematic Calibration using a Laser-Vision Sensor)

  • 정정우;강희준
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.176-182
    • /
    • 1999
  • This paper presents a new autonomous kinematic calibration technique by using a laser-vision sensor called "Perceptron TriCam Contour". Because the sensor measures by capturing the image of a projected laser line on the surface of the object, we set up a long, straight line of a very fine string inside the robot workspace, and then allow the sensor mounted on a robot to measure the point intersection of the line of string and the projected laser line. The point data collected by changing robot configuration and sensor measuring are constrained to on a single straght line such that the closed-loop calibration method can be applied. The obtained calibration method is simple and accurate and also suitable for on-site calibration in an industrial environment. The method is implemented using Hyundai VORG-35 for its effectiveness.

  • PDF

운용자와 자율 무인선 상호 작용을 고려한 행위 기반의 제어 알고리즘 (Behavior-based Control Considering the Interaction Between a Human Operator and an Autonomous Surface Vehicle)

  • 조용훈;김종휘;김진환;조용진;유재관
    • 한국해양공학회지
    • /
    • 제33권6호
    • /
    • pp.620-626
    • /
    • 2019
  • With the development of robot technology, the expectation of autonomous mission operations has increased, and the research on robot control architectures and mission planners has continued. A scalable and robust control architecture is required for unmanned surface vehicles (USVs) to perform a variety of tasks, such as surveillance, reconnaissance, and search and rescue operations, in unstructured and time-varying maritime environments. In this paper, we propose a robot control architecture along with a new utility function that can be extended to various applications for USVs. Also, an additional structure is proposed to reflect the operator's command and improve the performance of the autonomous mission. The proposed architecture was developed using a robot operating system (ROS), and the performance and feasibility of the architecture were verified through simulations.

바퀴구름운동을 고려한 역진자 로봇의 주행 (Driving of Inverted Pendulum Robot Using Wheel Rolling Motion)

  • 이준호;박치성;황종명;이장명
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.110-119
    • /
    • 2010
  • This paper aims to add the autonomous driving capability to the inverted pendulum system which maintains the inverted pendulum upright stably. For the autonomous driving from the starting position to the goal position, the motion control algorithm is proposed based on the dynamics of the inverted pendulum robot. To derive the dynamic model of the inverted pendulum robot, a three dimensional robot coordinate is defined and the velocity jacobian is newly derived. With the analysis of the wheel rolling motion, the dynamics of inverted pendulum robot are derived and used for the motion control algorithm. To maintain the balance of the inverted pendulum, the autonomous driving strategy is derived step by step considering the acceleration, constant velocity and deceleration states simultaneously. The driving experiments of inverted pendulum robot are performed while maintaining the balance of the inverted pendulum. For reading the positions of the inverted pendulum and wheels, only the encoders are utilized to make the system cheap and reliable. Even though the derived dynamics works for the slanted surface, the experiments are carried out in the standardized flat ground using the inverted pendulum robot in this paper. The experimental data for the wheel rolling and inverted pendulum motions are demonstrated for the straight line motion from a start position to the goal position.

풍선기반 자율형 공중로봇키트 개발 (Development of Balloon-based Autonomous Airborne Robot-kit)

  • 김현식
    • 한국전자통신학회논문지
    • /
    • 제8권8호
    • /
    • pp.1213-1218
    • /
    • 2013
  • 최근에는 극한 분야에서 수상로봇, 수중로봇, 공중로봇과 같은 해양로봇의 필요성이 제기되고 있음에도 불구하고, 그 기반은 매우 부족하다. 다행히도, 로봇교육에 대한 요구가 증가하고 있으므로, 해양로봇키트의 개발 및 보급을 통하여 연구개발 기반을 마련하고 미래 인재를 양성하는 것이 바람직하다. 그러나, 기존에는 공중 이동 및 장애물회피가 가능한 풍선기반의 해양로봇키트가 없다. 이 문제를 해결하기 위해서, 적외선 센서를 이용하여 장애물회피가 가능한 풍선기반 자율 공중로봇키트가 개발되었다. 시험평가 결과는 실제 적용 가능성과 추가 연구의 필요성을 보여준다.

DEVELOPMENT OF LEVEE WEEDING ROBOT - Pathway Control System on the Strait Levee -

  • Takeda, J.;Takahashi, S.;Torisu, R.;Ashraf, M.A.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.325-332
    • /
    • 2000
  • The objective of this research work is to develop an autonomous levee-weeding robot. In this paper, pathway control system for the robot is developed and simulated. A prototype autonomous vehicle for levee weeding is also developed and used in the actual test. The results obtained in this research work is summarized as follows; 1) The simulated typical time history of lateral displacements and heading angle of the vehicle in straight run shows that the vehicle tendency is always to achieve the target path from any of its deviated position and heading angle. 2) The test run on an asphalt surface by the prototype crawler-type vehicle is in good agreement with the simulation results.

  • PDF

로봇운영체제를 이용한 보트의 자율운항 알고리즘 개발 (Development of Autonomous Algorithm for Boat Using Robot Operating System)

  • 조현재;김정현;김수림;우주현;박종용
    • 대한조선학회논문집
    • /
    • 제58권2호
    • /
    • pp.121-128
    • /
    • 2021
  • According to the increasing interest and demand for the Autonomous Surface Vessels (ASV), the autonomous navigation system is being developed such as obstacle detection, avoidance, and path planning. In general, autonomous navigation algorithm controls the ship by detecting the obstacles with various sensors and planning path for collision avoidance. This study aims to construct and prove autonomous algorithm with integrated various sensor using the Robot Operating System (ROS). In this study, the safety zone technique was used to avoid obstacles. The safety zone was selected by an algorithm to determine an obstacle-free area using 2D LiDAR. Then, drift angle of the ship was controlled by the propulsion difference of the port and starboard side that based on PID control. The algorithm performance was verified by participating in the 2020 Korea Autonomous BOAT (KABOAT).

추가적 확장 칼만 필터를 이용한 불규칙적인 바닥에서 자율 이동 로봇의 효율적인 SLAM (An Effective SLAM for Autonomous Mobile Robot Navigation in Irregular Surface using Redundant Extended Kalman Filter)

  • 박재용;최정원;이석규;박주현
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.218-224
    • /
    • 2009
  • This paper proposes an effective SLAM based on redundant extended Kalman filter for robot navigation in an irregular surface to enhance the accuracy of robot's pose. To establish an accurate model of a caterpillar type robot is very difficult due to the mechanical complexity of the system which results in highly nonlinear behavior. In addition, for robot navigation on an irregular surface, its control suffers from the uncertain pose of the robot heading closely related to the condition of the floor. We show how this problem can be overcome by the proposed approach based on redundant extended Kalman filter through some computer simulation results.