• Title/Summary/Keyword: Autonomous operation technology

Search Result 219, Processing Time 0.029 seconds

A study on autonomy level classification for self-propelled agricultural machines

  • Nam, Kyu-Chul;Kim, Yong-Joo;Kim, Hak-Jin;Jeon, Chan-Woo;Kim, Wan-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.617-627
    • /
    • 2021
  • In the field of on-road motor vehicles, the level for autonomous driving technology is defined according to J3016, proposed by Society of Automotive Engineers (SAE) International. However, in the field of agricultural machinery, different standards are applied by country and manufacturer, without a standardized classification for autonomous driving technology which makes it difficult to clearly define and accurately evaluate the autonomous driving technology, for agricultural machinery. In this study, a method to classify the autonomy levels for autonomous agricultural machinery (ALAAM) is proposed by modifying the SAE International J3016 to better characterize various agricultural operations such as tillage, spraying and harvesting. The ALAAM was classified into 6 levels from 0 (manual) to 5 (full automation) depending on the status of operator and autonomous system interventions for each item related to the automation of agricultural tasks such as straight-curve path driving, path-implement operation, operation-environmental awareness, error response, and task area planning. The core of the ALAAM classification is based on the relative roles between the operator and autonomous system for the automation of agricultural machines. The proposed ALAAM is expected to promote the establishment of a standard to classify the autonomous driving levels of self-propelled agricultural machinery.

Conceptual design of autonomous emergency operation system for nuclear power plants and its prototype

  • Kim, Jonghyun;Lee, Deail;Yang, Jaemin;Lee, Subong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.308-322
    • /
    • 2020
  • This paper presents a conceptual design for a plant-wide autonomous operation system that uses artificial intelligence techniques. The autonomous operation system has the power and ability to perform the control functions needed for the emergency operation of a nuclear power plant (NPP) with reduced operator intervention. This paper discusses the emergency operation and level of automation in an NPP and presents the design requirements for an autonomous emergency operation system (A-EOS). Then, an architecture that consists of several modules is proposed, with descriptions of the functions. Finally, this paper introduces a prototype of the suggested autonomous system that integrates the authors' previous works.

Local Path Planning Manager for Autonomous Navigation of UGV (무인차량의 자율주행을 위한 지역경로계획 매니저)

  • Lee, Young-Il;Lee, Ho-Joo;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.990-997
    • /
    • 2010
  • The Mission environment of UGV(Unmanned Ground Vehicle) has a complexity and variety, and the status of system and sensor is dependent on the environment factors such as operation time, the weather and road type. It is necessary for UGV to cope adaptively with the various mission types, operation modes and operation environment as human operators do. To satisfy this necessity, we present an autonomy manager based on the autonomous architecture. In this paper, we design a path planning software architecture and LPP manager by using open autonomous architecture which is previously designed by ADD. Field test is conducted with UGV in order to verify the performance of LPP Manager based on the Autonomous Architecture with scenarios.

Traffic Operation Strategy for the Mixed Traffic Flow on Autonomous Vehicle Pilot Zone: Focusing on Pangyo Zero City (자율주행차 혼재 시 시범운행지구 교통운영전략 수립: 판교제로시티를 중심으로)

  • Donghyun Lim;Woosuk Kim;Jongho Kim;Hyungjoo Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.172-191
    • /
    • 2023
  • This study was undertaken to strategize the mixed traffic operation of autonomous vehicles in the pilot zone. This was achieved by analyzing the changes expected when autonomous vehicles are mixed in the autonomous vehicle pilot zone. Although finding a safe and efficient traffic operation strategy is required for the pilot zone to serve as a test bed for autonomous vehicles, there is no available operation strategy based on the mixture of autonomous vehicles. In order to presents a traffic operation strategies for each period of autonomous vehicle introduction, traffic efficiency and safety analysis was performed according to the autonomous vehicle market percentage rate. Based on the analysis results, the introduction stage was divided into introductory stage, transition period, and stable period based on the autonomous vehicle market share of 30% and 70%. This study presents the following traffic operation strategies. Considering the traffic flow operation strategy, we suggest the advancement of the existing road infrastructure at the introductory stage, and operating an autonomous driving lane and the mileage system during the transition period. We also propose expanding the operation of autonomous driving lanes and easing the speed limit during the stable period. In the traffic safety strategy, we present a manual and legal system for responding to autonomous vehicle accidents in the introductory stage, an analysis of the causes of autonomous vehicle accidents and the implementation of preventive policies in the transition period, and the advancement of the autonomous system and the reinforcement of the security system during the stable period. Through the traffic operation strategy presented in this study, we foresee the possibility of preemptively responding to the changes of traffic flow and traffic safety expected due to the mixture of autonomous vehicles in the autonomous vehicle pilot zone in the future.

The System Design and Demonstration for Autonomous Microgrid Operation

  • Jyung, Tae-Young;Jeong, Ki-Seok;Baek, Young-Sik;Kim, Heung-Geun;Seo, Gyu-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.171-177
    • /
    • 2012
  • The autonomous microgrid is a system that is autonomously operated depending on the grid and internal load condition, without the operator's intervention. In this study, a control algorithm for the microsource and an operation algorithm for the microgrid are proposed to realize the autonomous microgrid system. In addition, a microgrid operation system based on the operation algorithm is proposed. The electromagnetic transient program is used by the proposed microsource control algorithm for simulation, and the validity of the algorithm is verified. The proposed operation system is verified based on a case study using a simulator and test devices.

Development of Low-voltage Seamless Transfer Microgrid on Grid-connected Type Islands by Autonomous Operation (자율운전에 의한 계통연계형 도서의 저압 무순단 마이크로그리드 구축)

  • Kim, Jeong Hun;Kwon, Jung-Min;Yun, Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.169-176
    • /
    • 2017
  • This paper presents research on low-voltage microgrids to maintain a continuous power supply to critical loads on grid-connected islands in Korea. The low-voltage microgrids of this paper focused on that changes public office buildings into uninterrupted microgrids by autonomous operation. For this, a microgrid controller (MGC) and a power conditioning system (PCS) that allow a seamless transfer between grid-connected and grid-isolated operation are proposed. The proposed PCS operates with a silicon controlled rectifier (SCR) switch and employs a simple structure. It supplies power continuously without operators through a coordinated operation between MGC and PCS. In addition, proposed MG has a schedule operation for minimizing electricity charges and provides ancillary services that enable the utilization of resources according to the operation purpose of utility distribution networks. To demonstrate the uninterrupted low-voltage microgrid proposed in this study, a microgrid was implemented and tested in a public office building in Anjwa Island, Jeollanam-do in Korea. A seamless, autonomous operation history, despite system disturbances, was obtained through a long-term demonstration of operation. The results showed that the proposed microgrid technology can be used to achieve energy resilience in grid-connected island areas.

Development of Radar-enabled AI Convergence Transportation Entities Detection System for Lv.4 Connected Autonomous Driving in Adverse Weather

  • Myoungho Oh;Mun-Yong Park;Kwang-Hyun Lim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.190-201
    • /
    • 2023
  • Securing transportation safety infrastructure technology for Lv.4 connected autonomous driving is very important for the spread of autonomous vehicles, and the safe operation of level 4 autonomous vehicles in adverse weather has limitations due to the development of vehicle-only technology. We developed the radar-enabled AI convergence transportation entities detection system. This system is mounted on fixed and mobile supports on the road, and provides excellent autonomous driving situation recognition/determination results by converging transportation entities information collected from various monitoring sensors such as 60GHz radar and EO/IR based on artificial intelligence. By installing such a radar-enabled AI convergence transportation entities detection system on an autonomous road, it is possible to increase driving efficiency and ensure safety in adverse weather. To secure competitive technologies in the global market, the development of four key technologies such as ① AI-enabled transportation situation recognition/determination algorithm, ② 60GHz radar development technology, ③ multi-sensor data convergence technology, and ④ AI data framework technology is required.

Analysis of the Prediction of Operation Processes based on Mode of Operation for Ships: Applying Delphi method

  • HyeRi Park;JeongMin Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.267-275
    • /
    • 2023
  • The digital transformation of the shipbuilding, shipping, and logistics sectors is predicted to lead to the introduction of autonomous ships and changes in the way ships are operated. The co-existence of various operation forms, such as autonomous operation and remote operation, with the existing operation methods is expected to lead to the transformation of the ship operation process and the emergence of new stakeholders. This paper studies the future ship operation process according to the change in ship operation method, predicts the change in the operating environment of future ships, and derives functional requirements by major tasks and stakeholders. The Delphi technique is applied to construct a ship operation scenario from the planning stage of voyage and cargo transport to the stage of arrival at the final destination port and discharge of cargo, and to predict future work changes by task and actor. Seafarers' activities are expected to be minimised by remote and autonomous operation, and experts in each field are expected to have responsibilities and tasks in different aspects of ship operation.

RESEARCH ON AUTONOMOUS LAND VEHICLE FOR AGRICULTURE

  • Matsuo, Yosuke;Yukumoto, Isamu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.810-819
    • /
    • 1993
  • An autonomous lan vehicle for agriculture(ALVA-II) was developed. A prototype vehicle was made by modifying a commercial tractor. A Navigation sensor system with a geo-magnetic sensor performed the autonomous operations of ALVA-II, such as rotary tilling with headland turnings. A navigation sensor system with a machine vision system was also investigated to control ALVA-II following a work boudnary.

  • PDF

Application of a Dynamic Positioning System to a Maritime Autonomous Surface Ship (MASS)

  • Kim, Jeong-Min;Park, Hye Ri
    • Journal of Navigation and Port Research
    • /
    • v.46 no.5
    • /
    • pp.435-440
    • /
    • 2022
  • The development and introduction of a Maritime Autonomous Surface Ship (MASS) are some of the most important changes leading to the fourth industrial era in the maritime area. The term 'MASS' refers to a ship operating independently, without human intervention, to reduce maritime accidents caused by human errors. Recent UK findings MASS also noted that particularly the dynamic positioning system will be considered to apply as newly function to a MASS. The DP system, a ship system developed decades ago and used for specific purposes like offshore operations, provides various functions to facilitate the accurate movements of the vessel, and operators can make decisions within the DP system, in addition to the ordinary ship system. In this paper, it would like to present the connection and application method with the main technical elements of the DP system in connection with the main technology of the DP system to achieve the safe operation of a MASS. In particular, among various position reference systems, the capability plot function of DP system, and the "follow target" mode in the operation mode are attractive functions that can contribute to the safe operation of autonomous ships.