• Title/Summary/Keyword: Autonomous learning

Search Result 507, Processing Time 0.021 seconds

Reinforcement Learning based Autonomous Emergency Steering Control in Virtual Environments (가상 환경에서의 강화학습 기반 긴급 회피 조향 제어)

  • Lee, Hunki;Kim, Taeyun;Kim, Hyobin;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.110-116
    • /
    • 2022
  • Recently, various studies have been conducted to apply deep learning and AI to various fields of autonomous driving, such as recognition, sensor processing, decision-making, and control. This paper proposes a controller applicable to path following, static obstacle avoidance, and pedestrian avoidance situations by utilizing reinforcement learning in autonomous vehicles. For repetitive driving simulation, a reinforcement learning environment was constructed using virtual environments. After learning path following scenarios, we compared control performance with Pure-Pursuit controllers and Stanley controllers, which are widely used due to their good performance and simplicity. Based on the test case of the KNCAP test and assessment protocol, autonomous emergency steering scenarios and autonomous emergency braking scenarios were created and used for learning. Experimental results from zero collisions demonstrated that the reinforcement learning controller was successful in the stationary obstacle avoidance scenario and pedestrian collision scenario under a given condition.

Multiple Behavior s Learning and Prediction in Unknown Environment

  • Song, Wei;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1820-1831
    • /
    • 2010
  • When interacting with unknown environments, an autonomous agent needs to decide which action or action order can result in a good state and determine the transition probability based on the current state and the action taken. The traditional multiple sequential learning model requires predefined probability of the states' transition. This paper proposes a multiple sequential learning and prediction system with definition of autonomous states to enhance the automatic performance of existing AI algorithms. In sequence learning process, the sensed states are classified into several group by a set of proposed motivation filters to reduce the learning computation. In prediction process, the learning agent makes a decision based on the estimation of each state's cost to get a high payoff from the given environment. The proposed learning and prediction algorithms heightens the automatic planning of the autonomous agent for interacting with the dynamic unknown environment. This model was tested in a virtual library.

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

Comparison of Autonomous Learning Effectiveness between Cyber Study and Off-line Learning (사이버학습과 인쇄 매체 학습의 자율적 학습 효과성 비교)

  • Han, Jung-Yoon;Kim, Hyun-Bae
    • Journal of The Korean Association of Information Education
    • /
    • v.17 no.4
    • /
    • pp.507-513
    • /
    • 2013
  • The purpose of this paper is to compare the learning effectiveness of autonomous learning between on-line cyber learning using Internet media and off-line learning using printed media. In this study, each group is provided with the same learning contents and the same learning conditions. For autonomous learning the results revealed a significant difference between on-line cyber learning being not as effective as off-line learning. In order to improve the effectiveness of on-line cyber learning the negative aspects have been identified. These findings will help to improve the development of on-line learning effectiveness.

Autonomous-Driving Vehicle Learning Environments using Unity Real-time Engine and End-to-End CNN Approach (유니티 실시간 엔진과 End-to-End CNN 접근법을 이용한 자율주행차 학습환경)

  • Hossain, Sabir;Lee, Deok-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.122-130
    • /
    • 2019
  • Collecting a rich but meaningful training data plays a key role in machine learning and deep learning researches for a self-driving vehicle. This paper introduces a detailed overview of existing open-source simulators which could be used for training self-driving vehicles. After reviewing the simulators, we propose a new effective approach to make a synthetic autonomous vehicle simulation platform suitable for learning and training artificial intelligence algorithms. Specially, we develop a synthetic simulator with various realistic situations and weather conditions which make the autonomous shuttle to learn more realistic situations and handle some unexpected events. The virtual environment is the mimics of the activity of a genuine shuttle vehicle on a physical world. Instead of doing the whole experiment of training in the real physical world, scenarios in 3D virtual worlds are made to calculate the parameters and training the model. From the simulator, the user can obtain data for the various situation and utilize it for the training purpose. Flexible options are available to choose sensors, monitor the output and implement any autonomous driving algorithm. Finally, we verify the effectiveness of the developed simulator by implementing an end-to-end CNN algorithm for training a self-driving shuttle.

Application Trends of Deep Learning Artificial Intelligence in Autonomous Things (자율사물을 위한 심층학습 인공지능 기술 적용 동향)

  • Cho, J.M.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.6
    • /
    • pp.1-11
    • /
    • 2020
  • Recently, autonomous things, which are pieces of equipment or devices that grasp the context of circumstances on their own and perform actions appropriate for the situation in the surrounding environment, are attracting much research interest. This is because autonomous things are expected to be able to interact with humans more naturally, supersede humans in many tasks, and further solve problems by themselves by collaborating with each other without human intervention. This prospect leans heavily on AI as deep learning has delivered astonishing breakthroughs recently and broadened its range of applications. This paper surveys application trends in deep learning-based AI techniques for autonomous things, especially autonomous driving vehicles, because they present a wide range of problems involving perception, decision, and actions that are very common in other autonomous things.

Behavior leaning and evolution of collective autonomous mobile robots using reinforcement learning and distributed genetic algorithms (강화학습과 분산유전알고리즘을 이용한 자율이동로봇군의 행동학습 및 진화)

  • 이동욱;심귀보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.8
    • /
    • pp.56-64
    • /
    • 1997
  • In distributed autonomous robotic systems, each robot must behaves by itself according to the its states and environements, and if necessary, must cooperates with other orbots in order to carray out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, the new learning and evolution method based on reinforement learning having delayed reward ability and distributed genectic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. Reinforement learning having delayed reward is still useful even though when there is no immediate reward. And by distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the perfodrmance of evolution, selective crossover using the characteristic of reinforcement learning is adopted in this paper, we verify the effectiveness of the proposed method by applying it to cooperative search problem.

  • PDF

Multi-label Lane Detection Algorithm for Autonomous Vehicle Using Deep Learning (자율주행 차량을 위한 멀티 레이블 차선 검출 딥러닝 알고리즘)

  • Chae Song Park;Kyong Su Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2024
  • This paper presents a multi-label lane detection method for autonomous vehicles based on deep learning. The proposed algorithm can detect two types of lanes: center lane and normal lane. The algorithm uses a convolution neural network with an encoder-decoder architecture to extract features from input images and produce a multi-label heatmap for predicting lane's label. This architecture has the potential to detect more diverse types of lanes in that it can add the number of labels by extending the heatmap's dimension. The proposed algorithm was tested on an OpenLane dataset and achieved 85 Frames Per Second (FPS) in end to-end inference time. The results demonstrate the usability and computational efficiency of the proposed algorithm for the lane detection in autonomous vehicles.

Comparative analysis of activation functions within reinforcement learning for autonomous vehicles merging onto highways

  • Dongcheul Lee;Janise McNair
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Deep reinforcement learning (RL) significantly influences autonomous vehicle development by optimizing decision-making and adaptation to complex driving environments through simulation-based training. In deep RL, an activation function is used, and various activation functions have been proposed, but their performance varies greatly depending on the application environment. Therefore, finding the optimal activation function according to the environment is important for effective learning. In this paper, we analyzed nine commonly used activation functions for RL to compare and evaluate which activation function is most effective when using deep RL for autonomous vehicles to learn highway merging. To do this, we built a performance evaluation environment and compared the average reward of each activation function. The results showed that the highest reward was achieved using Mish, and the lowest using SELU. The difference in reward between the two activation functions was 10.3%.

Two tales of platoon intelligence for autonomous mobility control: Enabling deep learning recipes

  • Soohyun Park;Haemin Lee;Chanyoung Park;Soyi Jung;Minseok Choi;Joongheon Kim
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.735-745
    • /
    • 2023
  • This paper surveys recent multiagent reinforcement learning and neural Myerson auction deep learning efforts to improve mobility control and resource management in autonomous ground and aerial vehicles. The multiagent reinforcement learning communication network (CommNet) was introduced to enable multiple agents to perform actions in a distributed manner to achieve shared goals by training all agents' states and actions in a single neural network. Additionally, the Myerson auction method guarantees trustworthiness among multiple agents to optimize rewards in highly dynamic systems. Our findings suggest that the integration of MARL CommNet and Myerson techniques is very much needed for improved efficiency and trustworthiness.