• Title/Summary/Keyword: Autonomous Underwater Vehicle

Search Result 216, Processing Time 0.024 seconds

An Efficient 3D Visualization Method of AUV Motion Using Interpolation of Position Data (보간법을 이용한 무인잠수정 3차원 운동의 효율적인 가시화 기법)

  • Lee, Hee-Suk;Jun, Bong-Huan;Kim, Ki-Hun;Kim, Sang-Bong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.327-330
    • /
    • 2006
  • With the increasing requirements for the survey and development of the ocean, the demands on the of AUV(Autonomous Underwater Vehicle) technologies have been increased. Reconstruction and replay of the AUV motion on the basis of the data stored during the execution of mission, can help the development of control strategies for AUVs such as mission planning and control algorithms. While an AUV cruises for her mission, her attitude and position data are is recorded. The data can be used for visualization of the motion in off-line. However, because most of the position data gathered from acoustic sensors have long time-interval and include intermittent faulty signal, the replayed motion by the graphic simulator can not demonstrate the motion as a smooth movie. In this paper, interpolation methods are surveyed to reconstruct the AUV position data. Then, an efficient 3D visualization method for AUV motion using the interpolation method is proposed. Simulation results arc also included to verify the proposed method.

  • PDF

An Implementation of PI Controller for the Position Control of Mobile Robot Using LabVIEW (LabVIEW를 이용한 이동로봇 위치제어를 위한 PI제어기 구현)

  • Park, Young-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.259-263
    • /
    • 2008
  • The dynamics of mobile robot is nonlinear. To cope with this nonlinearity, many advanced control schemes have been proposed recently. Generally, the advanced control schemes are complicated and not good for the practical real-time control when they are implemented as control programs. So, in this paper, a relatively simple PI controller is proposed and applied to the position control of mobile robot with the adoption of reference trajectory calculation method used for the AUV(Autonomous Underwater Vehicle) control. The proposed PI controller is programmed using LabVIEW which is popular for its graphical programming characteristics. The simulation and experimental results show the feasibility and effectiveness of the proposed PI controller.

  • PDF

Development of Mission Language for Autonomous Underwater Vehicle (자율무인잠수정을 위한 임무 언어 개발)

  • Kim, Bang-Hyun;Lee, Fill-Youb;Sim, Hyung-Won;Jun, Bong-Huan;Lee, Pan-Mook
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.554-559
    • /
    • 2010
  • 자율무인잠수정은 탐사 목적에 따라 다양한 임무를 수행해야 하며, 임무에 따라 자율무인잠수정 행동의 유형과 순서는 달라질 수 있다. 그러나 대부분의 자율무인잠수정은 한정된 임무에 대하여 프로그램 내부에 고정된 행동 유형으로 동작하며, 다른 유형의 임무를 수행해야 할 경우에는 프로그램을 수정해야 하는 문제점이 있다. 따라서 본 연구에서는 자율무인잠수정이 수행할 수 있는 다양한 임무를 명시할 수 있는 임무 언어를 개발하였다. 이 임무 언어는 명령어의 실행 순서를 제어할 수 있는 제어문과 자율무인잠수정의 행동을 지정하거나 자율무인잠수정의 상태를 입출력 할 수 있는 명령어, 그리고 변수 정의를 제공하기 때문에, 사용자가 자율무인잠수정의 임무를 자유롭게 표현하는 것이 가능하다. 임무 언어로 작성된 임무 파일은 전용 어셈블러에 의해 이진 형식의 실행이미지로 변환된 후에, 자율무인잠수정 내장 소프트웨어 내부의 가상기계 기억장치에 적재되어 실행된다. 실행이미지를 가상기계에서 해석하고 실행하는데 필요한 시스템의 자원을 최소화하기 위하여 임무 언어는 자율무인잠수정의 임무를 표현하기 위한 필수적인 부분만을 고려하여 설계되었으며, 문법은 ARM v5 어셈블리와 유사한 형태이다. 개발된 임무 언어는 한국해양연구원에서 개발한 이심이100 자율무인잠수정에 적용되었으며, 이후 개발할 6,000m급의 이심이6000 자율무인잠수정에도 사용될 예정이다.

  • PDF

A Study on the Research Trends in Unmanned Surface Vehicle using Topic Modeling (토픽모델링을 이용한 무인수상정 기술 동향 분석)

  • Kim, Kwimi;Ma, Jungmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.597-606
    • /
    • 2020
  • Because the USV(Unmanned Surface Vehicle) is capable of remote control or autonomous navigation at sea, it can secure the superiority of combat power while minimizing human losses in a future combat environment. To plan the technology for the development of USV, the trend analysis of related technology and the selection of promising technology should be preceded, but there has been little research in this area. The purpose of this paper was to measure and evaluate the technology trends quantitatively. For this purpose, this study analyzed the technology trends and selected promising/declining technologies using topic modeling of papers and patent data. As a result of topic modeling, promising technologies include control and navigation, verification/validation, autonomous level, mission module, and application technology, and declining technologies include underwater communication and image processing technology. This study also identified new technology areas that were not included in the existing technology classification, e.g., technology related to research and development of USV, artificial intelligence, launch/recovery, and operation, such as cooperation with manned and unmanned systems. The technology trends and new technology areas identified through this study may be used to derive key technologies related to the development of the USV and establish appropriate R&D policies.

Acoustic images of the submarine fan system of the northern Kumano Basin obtained during the experimental dives of the Deep Sea AUV URASHIMA (심해 자율무인잠수정 우라시마의 잠항시험에서 취득된 북 구마노 분지 해저 선상지 시스템의 음향 영상)

  • Kasaya, Takafumi;Kanamatsu, Toshiya;Sawa, Takao;Kinosita, Masataka;Tukioka, Satoshi;Yamamoto, Fujio
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2011
  • Autonomous underwater vehicles (AUVs) present the important advantage of being able to approach the seafloor more closely than surface vessel surveys can. To collect bathymetric data, bottom material information, and sub-surface images, multibeam echosounder, sidescan sonar (SSS) and subbottom profiler (SBP) equipment mounted on an AUV are powerful tools. The 3000m class AUV URASHIMA was developed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). After finishing the engineering development and examination phase of a fuel-cell system used for the vehicle's power supply system, a renovated lithium-ion battery power system was installed in URASHIMA. The AUV was redeployed from its prior engineering tasks to scientific use. Various scientific instruments were loaded on the vehicle, and experimental dives for science-oriented missions conducted from 2006. During the experimental cruise of 2007, high-resolution acoustic images were obtained by SSS and SBP on the URASHIMA around the northern Kumano Basin off Japan's Kii Peninsula. The map of backscatter intensity data revealed many debris objects, and SBP images revealed the subsurface structure around the north-eastern end of our study area. These features suggest a structure related to the formation of the latest submarine fan. However, a strong reflection layer exists below ~20 ms below the seafloor in the south-western area, which we interpret as a denudation feature, now covered with younger surface sediments. We continue to improve the vehicle's performance, and expect that many fruitful results will be obtained using URASHIMA.

Development of hovering-type AUV test-bed 'OCTAGON' (호버링 타입 자율무인잠수정 'OCTAGON'의 테스트베드 개발)

  • Choi, Dong-Ho;Lee, Young-Jin;Hong, Sung-Min;Kim, Joon-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.516-526
    • /
    • 2016
  • This paper introduces a hovering-type autonomous underwater vehicle (AUV) developed for research and its fundamental motion performance results obtained by simulation and field test. The AUV can control its motion in four degrees of freedom (DOF) by means of its horizontal and vertical thrusters, and it is designed to provide a test-bed that facilitates ease of operation and experimentation. Prior to the field tests, six DOF equations of motion are developed, and a simulation program is constructed using MATLAB and Simulink to verify the essential motion performance of the designed vehicle. Furthermore, a proportional-integral-derivative (PID) controller and fuzzy PID controller are designed, and their performances are verified through a simulation. Field tests are performed to verify the motion performance of the AUV; way-point tracking is executed by the PID and fuzzy PID controllers. The results confirmed appropriate control performance under current disturbances.