• Title/Summary/Keyword: Autonomous Systems

Search Result 1,581, Processing Time 0.037 seconds

Lifelike Behaviors of Collective Autonomous Mobile Agents

  • Min, Suk-Ki;Hoon Kang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.176-180
    • /
    • 1998
  • We may gaze at some peculiar scenes of flocking of birds and fishes. This paper demonstrates that multiple agent mobile robots show complex behaviors from efficient and strategic rules. The simulated flock are realized by a distributed behavioral model and each mobile robot decides its own motion as an individual which moves constantly by sensing the dynamic environment.

  • PDF

Autonomous AGV for automation (무궤도 자율 AGV 개발)

  • 표종훈;최진욱;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.13-18
    • /
    • 1992
  • In this study, we developed an autonomous AGV which carries materials between workshops. In most of existing AGV systems, when AGV is required to change its navigating path, the guideline or landmark of AGV should be rebuilt according to new navigating path. Using sensors and internal coordinate system, our AGV, however, can navigate along the new path by only changing input parameters of program. On navigating, if AGV meets obstacles, it avoids them and go on to the destination.

  • PDF

Implementation of the Obstacle Avoidance Algorithm of Autonomous Mobile Robots by Clustering (클러스터링에 의한 자율 이동 로봇의 장애물 회피 알고리즘)

  • 김장현;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.504-510
    • /
    • 1998
  • In this paper, Fundamental rules governing group intelligence "obstacle avoidance" behavior of multiple autonomous mobile robots are represented by a small number of fuzzy rules. Complex lifelike behavior is considered as local interactions between simple individuals under small number of fundamental rules. The fuzzy rules for obstacle avoidance are generated from clustering the input-output data obtained from the obstacle avoidance algorithm. Simulation shows the fuzzy rules successfully realizes fundamental rules of the obstacle avoidance behavior.

  • PDF

Remote Control of Autonomous Robots via Internet

  • Sugisaka, Masanori;Johari, Mohd Rizon M
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.24-27
    • /
    • 2004
  • This paper describes the method how to control an autonomous robot remotely using Internet. The autonomous robot that has an artificial brain is called "Tarou". (1) It is able to move along the line on the floor based on processing the image data obtained from two CCD cameras. (2) It is able to understand dialogs between human being and it and is able to take actions such as turn right and lefts, go forward 1m and go backward 0.5m, etc. (3) It is able to recognize patterns of objects. (4) It is able to recognize human faces. (5) It is able to communicate human being and to speak according to contents written in the program. We show the techniques to control the autonomous robot "Tarou" remotely by personal computer and/or portable Phone via Internet. The techniques developed in our research could dramatically increase their performance for..the need of artificial life robot as the next generation robot and national homeland security needs.

  • PDF

Development of an Autonomous Navigation System for Unmanned Ground Vehicle

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.4
    • /
    • pp.244-250
    • /
    • 2008
  • This paper describes the design and implementation of an unmanned ground vehicle (UGV) and also estimates how well autonomous navigation and remote control of UGV can be performed through the optimized arbitration of several sensor data, which are acquired from vision, obstacle detection, positioning system, etc. For the autonomous navigation, lane detection and tracing, global positioning, and obstacle avoidance are necessarily required. In addition, for the remote control, two types of experimental environments are established. One is to use a commercial racing wheel module, and the other is to use a haptic device that is useful for a user application based on virtual reality. Experimental results show that autonomous navigation and remote control of the designed UGV can be achieved with more effectiveness and accuracy using the proper arbitration of sensor data and navigation plan.

  • PDF

Internal Teleoperation of an Autonomous Mobile Robot (인터넷을 이용한 자율운행로봇의 원격운용)

  • 박태현;강근택;이원창
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.45-45
    • /
    • 2000
  • This paper proposes a remote control system that combines computer network and an autonomous mobile robot. We control remotely an autonomous mobile robot with vision via the internet to guide it under unknown environments in the real time. The main feature of this system is that local operators need a World Wide Web browser and a computer connected to the internet communication network and so they can command the robot in a remote location through our Home Page. The hardware architecture of this system consists of an autonomous mobile robot, workstation, and local computers. The software architecture of this system includes the server part for communication between user and robot and the client part for the user interface and a robot control system. The server and client parts are developed using Java language which is suitable to internet application and supports multi-platform. Furthermore, this system offers an image compression method using motion JPEG concept which reduces large time delay that occurs in network during image transmission.

  • PDF

Development of the Neural Network Steering Controller based on Magneto-Resistive Sensor of Intelligent Autonomous Electric Vehicle (자기저항 센서를 이용한 지능형 자율주행 전기자동차의 신경회로망 조향 제어기 개발)

  • 김태곤;손석준;유영재;김의선;임영철;이주상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.196-196
    • /
    • 2000
  • This paper describes a lateral guidance system of an autonomous vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in simulations. As the neural network controller acquires magnetic field values(B$\_$x/, B$\_$y/, B$\_$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the teaming pattern, teaming itself, and the adequacy of the design controller. The performance of the controller can be verified through simulation. The real autonomous electric vehicle using neural network controller verified good results.

  • PDF

Autonomous Adaptive Digital Over Current Relay (계통변화를 고려한 자율 적응형 과전류 계전기)

  • 윤준석;최면송;이승재;현승호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.444-449
    • /
    • 2003
  • In this paper present Autonomous Adaptive Digital Over Current Relay for distribution networks which acts autonomous setting using the short circuit impedance measured by relay of power systems. Automation of relay setting is one of the basic requirements for distribution automation, although manual relay setting is used at present. The short circuit impedance from a power source in distribution networks essential for the Autonomous Relay Setting changes frequently in distribution networks. In this paper the short circuit impedance is calculated with voltage and current measured in real time operation of digital relay using the Recursive Least Squares. A new method of digital relay setting is introduced using the the short circuit impedance and load current.

A comparative study between trapezoidal combined footings and T-shaped combined footings

  • Garcia-Galvan, Marylu;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Rivera-Mendoza, Jose Benito
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.233-257
    • /
    • 2022
  • This work presents a comparative study between two different models: trapezoidal and T-shaped combined footings. The comparative study between trapezoidal and T-shaped combined footings presented in this paper generatesresultsthat have an unparalleled accuracy for all foundation engineering problems. The main part of this research is to obtain the optimal area, reinforcing steel, and thickness of the trapezoidal and T-shaped combined footings using the new models. The comparison is made for two trapezoidal combined footings and two T-shaped combined footings ofreinforced concrete subjected to the same load.Themain findings are: themodelfortrapezoidal combined footings can be used for rectangular and triangular, and the T-shaped combined footings can be used for rectangular. The structure of the paper is asfollowsfirst a very complete state of the art with extensive referencesthat describesthe methodology used for the different models clearly, presents different numerical examples, results and at the end conclusions.

Autonomous-guided orchard sprayer using overhead guidance rail (요버헤드 가이던스 레일 추종 방식에 의한 과수방제기의 무인 주행)

  • Shin, B.S.;Kim, S.H.;Park, J.U.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.489-499
    • /
    • 2006
  • Since the application of chemicals in confined spaces under the canopy of an orchard is hazardous work, it is needed to develop an autonomous guidance system for an orchard sprayer. The autonomous guidance system developed in this research could steer the vehicle by tracking an overhead guidance rail, which was installed on an existing frame structure. The autonomous guidance system consisted of an 80196 kc microprocessor, an inclinometer, two interface circuits of actuators for steering and ground speed control, and a fuzzy control algorithm. In addition, overhead guidance rails for both straight and curved paths were devised, and a trolley was designed to move smoothly along the overhead guidance rails. Evaluation tests showed that the experimental vehicle could travel along the desired path at a ground speed of 30 $\sim$ 50 cm/s with a RMS error of 5 cm and maximum deviation of less than 12 cm. Even when the vehicle started with an initial offset or a deflected heading angle, it could move quickly to track the desired path after traveling 2 $\sim$ 3 m. The vehicle could also complete turns with a curvature of 1 m. However, at a ground speed of 50 cm/s, the vehicle tended to over-steer, resulting in a zigzag motion along the straight path, and tended to turn outward from the projected line of the guidance rail.