• Title/Summary/Keyword: Autonomous Robot Vehicle

Search Result 131, Processing Time 0.021 seconds

The Vision-based Autonomous Guided Vehicle Using a Virtual Photo-Sensor Array (VPSA) for a Port Automation (가상 포토센서 배열을 탑재한 항만 자동화 자을 주행 차량)

  • Kim, Soo-Yong;Park, Young-Su;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.164-171
    • /
    • 2010
  • We have studied the port-automation system which is requested by the steep increment of cost and complexity for processing the freight. This paper will introduce a new algorithm for navigating and controlling the autonomous Guided Vehicle (AGV). The camera has the optical distortion in nature and is sensitive to the external ray, the weather, and the shadow, but it is very cheap and flexible to make and construct the automation system for the port. So we tried to apply to the AGV for detecting and tracking the lane using the CCD camera. In order to make the error stable and exact, this paper proposes new concept and algorithm for obtaining the error is generated by the Virtual Photo-Sensor Array (VPSA). VPSAs are implemented by programming and very easy to use for the various autonomous systems. Because the load of the computation is light, the AGV utilizes the maximal performance of the CCD camera and enables the CPU to take multi-tasks. We experimented on the proposed algorithm using the mobile robot and confirmed the stable and exact performance for tracking the lane.

A Study on Detection of Lane and Situation of Obstacle for AGV using Vision System (비전 시스템을 이용한 AGV의 차선인식 및 장애물 위치 검출에 관한 연구)

  • 이진우;이영진;이권순
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.303-312
    • /
    • 2000
  • In this paper, we describe an image processing algorithm which is able to recognize the road lane. This algorithm performs to recognize the interrelation between AGV and the other vehicle. We experimented on AGV driving test with color CCD camera which is setup on the top of vehicle and acquires the digital signal. This paper is composed of two parts. One is image preprocessing part to measure the condition of the condition of the lane and vehicle. This finds the information of lines using RGB ratio cutting algorithm, the edge detection and Hough transform. The other obtains the situation of other vehicles using the image processing and viewport. At first, 2 dimension image information derived from vision sensor is interpreted to the 3 dimension information by the angle and position of the CCD camera. Through these processes, if vehicle knows the driving conditions which are lane angle, distance error and real position of other vehicles, we should calculate the reference steering angle.

  • PDF

Development and Tank Test of an Autonomous Underwater Vehicle 'ISiMI' (자율무인잠수정 테스트베드 이심이의 개발과 수조시험)

  • Jun, Bong-Huan;Park, Jin-Yeong;Lee, Pan-Mook;Lee, Fill-Youb;Oh, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.67-74
    • /
    • 2007
  • Maritime and Ocean Engineering Research Institute (MOERI), a branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) named ISiMI (Integrated Submergible for Intelligent Mission Implementation). ISiMI is an AUV platform to satisfy the various needs of experimental test required for development of challenging technologies newly investigated in the field of underwater robot; control and navigational algorithms and software architectures. The main design goal of ISiMI AUV is downsizing which will reduce substantially the operating cost compared to other vehicles previously developed in KORDI such as VORAM or DUSAUV. As a result of design and manufacturing process, ISiMI is implemented to be 1.2 m in length, 0.17 m in diameter and weigh 20 kg in air. A series of tank test is conducted to verify the basic functions of ISiMI in the Ocean Engineering Basin of MOERI, which includes manual control with R/F link, auto depth, auto heading control and a final approach control for underwater docking. This paper describes the implementation of ISiMI system and the experimental results to verify the function of ISiMI as a test-bed AUV platform.

Development and Trials of an Small Autonomous Underwater Vehicle 'ISiMI' (소형무인잠수정(AUV) 이심이의 개발 및 시험)

  • Jun, Bong-Huan;Park, Jin-Yeong;Lee, Pan-Mook;Lee, Fill-Youb;Lee, Jong-Moo;Oh, Jun-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.347-350
    • /
    • 2006
  • Maritime and Ocean Engineering Research Institute (MOERI), a branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) named ISiMI(Integrated Submergible for Intelligent Mission Implementation). ISiMI is an AUV platform to satisfy the various needs of experimental test required for development of challenging technologies newly investigated in the field of underwater robot; control and navigational algorithms and software architectures. The main design goal of ISiMI AUV is downsizing which will reduce substantially the operating cost compared to other vehicles previously developed in KORDI such as VORAM or DUSAUV. As a result of design and manufacturing process, ISiMI is implemented to be 1.2m in length, 0.17m in diameter and weigh 20 kg in air. A series of tank test is conducted to verify the basic functions of ISiMI in the Ocean Engineering Basin of MOERI, which includes manual control with R/F link, auto depth, auto heading control and a final approach control for underwater docking. This paper describes the implementation of ISiMI system and the experimental results to verify the function of ISiMi as a test-bed AUV platform.

  • PDF

Implementation of Camera-Based Autonomous Driving Vehicle for Indoor Delivery using SLAM (SLAM을 이용한 카메라 기반의 실내 배송용 자율주행 차량 구현)

  • Kim, Yu-Jung;Kang, Jun-Woo;Yoon, Jung-Bin;Lee, Yu-Bin;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.687-694
    • /
    • 2022
  • In this paper, we proposed an autonomous vehicle platform that delivers goods to a designated destination based on the SLAM (Simultaneous Localization and Mapping) map generated indoors by applying the Visual SLAM technology. To generate a SLAM map indoors, a depth camera for SLAM map generation was installed on the top of a small autonomous vehicle platform, and a tracking camera was installed for accurate location estimation in the SLAM map. In addition, a convolutional neural network (CNN) was used to recognize the label of the destination, and the driving algorithm was applied to accurately arrive at the destination. A prototype of an indoor delivery autonomous vehicle was manufactured, and the accuracy of the SLAM map was verified and a destination label recognition experiment was performed through CNN. As a result, the suitability of the autonomous driving vehicle implemented by increasing the label recognition success rate for indoor delivery purposes was verified.

A Study on the Development of Underwater Robot Control System for Autonomous Grasping (자율 파지를 위한 수중 로봇 제어 시스템 구축에 관한 연구)

  • Lee, Yoongeon;Lee, Yeongjun;Chae, Junbo;Choi, Hyun-Taek;Yeu, Taekyeong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • This paper presents a control and operation system for a remotely operated vehicle (ROV). The ROV used in the study was equipped with a manipulator and is being developed for underwater exploration and autonomous underwater working. Precision position and attitude control ability is essential for underwater operation using a manipulator. For propulsion, the ROV is equipped with eight thrusters, the number of those are more than six degrees-of-freedom. Four of them are in charge of surge, sway, and yaw motion, and the other four are responsible for heave, roll, and pitch motion. Therefore, it is more efficient to integrate the management of the thrusters rather than control them individually. In this paper, a thrust allocation method for thruster management is presented, and the design of a feedback controller using sensor data is described. The software for the ROV operation consists of a robot operating system that can efficiently process data between multiple hardware platforms. Through experimental analysis, the validity of the control system performance was verified.

How to Derive the Autonomous Driving Function Level of Unmanned Ground Vehicles - Focusing on Defense Robots - (무인지상차량의 자율주행 기능수준 도출 방법 - 국방로봇을 중심으로 -)

  • Kim, Yull-Hui;Choi, Yong-Hoon;Kim, Jin-Oh
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.205-213
    • /
    • 2017
  • This paper is a study on the method to derive the functional level required for autonomous unmanned ground vehicle, one of the defense robots. Conventional weapon systems are not significantly affected by the operating environment, while defense robots exhibit different performance depending on the operating environment, even if they are on the same platform. If the performance of defense robot is different depending on operational environment, results of mission performance will be vary significantly. Therefore, it is necessary to clarify the level of function required by the military in order to research and develop most optimal defense robots. In this thesis, we propose a method to derive the required function level of unmanned ground vehicles, focusing on autonomous driving, one of the most vital functions of defense robots. Our results showed that the autonomous driving function depending intervention levels and evaluated functional sensitivity for autonomous driving of the unmanned vehicle using climate and topography as variables.

Applications and Key Technologies of Biomimetic Underwater Robot for Naval Operations (생체모방형 수중로봇의 해양작전 운용개념 및 핵심소요기술)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.189-200
    • /
    • 2015
  • This paper gives an overview on the some potential applications and key technologies of biomimetic underwater robot for naval operations. Unlike most manned underwater naval systems, biomimetic underwater robots can be especially useful in near-land or harbour areas due to their ability to operate in shallow water effectively. Biomimetic underwater robot provide advantages in reaching locations that would be difficult or too dangerous for a manned vehicle to reach, as well as providing a level of autonomy that can remove the requirement for dedicated human operator support. Using multiple or schools of underwater robots would provide increased flexibility for navigation, communication and surveillance ability. And it alleviate some of the restrictions associated with speed and endurance design constraints.

On the Design of an Efficient Mobile Robot Framework by Using Collaborative Sensor Fusion (다양한 센서 융합을 통한 효율적인 모바일로봇 프레임워크 설계)

  • Kim, Dong-Hwan;Jo, Sung-Hyun;Yang, Yeon-Mo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.124-131
    • /
    • 2011
  • There are many researches in unmanned vehicles such as UGV(Unmanned Ground Vehicle), AUV(Autonomous Underwater Vehicle). In these researches, differential wheeled mobile robots are mainly used to develop the experimental stage algorithm because of the simplicity of modeling and control. Usually a commercial product used in the study, but in order to operate a commercial product to the restrictions because there would need to use a fixed protocol. Using the microprocessor makes the internal sensors(encoder and INS) and external sensors(ultrasonic sensors, infrared sensors) operate and to determine commands for robot operation. This paper propose a mobile robot design for suitable purpose.

Development of Tele-operation Interface and Stable Navigation Strategy for Humanoid Robot Driving (휴머노이드 로봇의 안전한 차량 주행 전략 및 원격 제어 인터페이스 개발)

  • Shin, Seho;Kim, Minsung;Ahn, Joonwoo;Kim, Sanghyun;Park, Jaeheung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.904-911
    • /
    • 2016
  • This paper presents a novel driving system by the humanoid robot to drive a vehicle in disaster response situations. To enhance robot's capability for substituting human activities in responding to natural and man-made disaster, the one of prerequisite skills for the rescue robot is the mounted mobility to maneuver a vehicle safely in disaster site. Therefore, our driving system for the humanoid is developed in order to steer a vehicle through unknown obstacles even under poor communication conditions such as time-delay and black-out. Especially, the proposed system includes a tele-manipulation interface and stable navigation strategies. First, we propose a new type of path estimation method to overcome limited communication. Second, we establish navigation strategies when the operator cannot recognize obstacles based on Dynamic Window Approach. The effectiveness of the proposed developments is verified through simulation and experiments, which demonstrate suitable system for driving a vehicle in disaster response.