• Title/Summary/Keyword: Autonomous Flight

Search Result 159, Processing Time 0.027 seconds

Image-based Localization Recognition System for Indoor Autonomous Navigation (실내 자율 비행을 위한 영상 기반의 위치 인식 시스템)

  • Moon, SungTae;Cho, Dong-Hyun;Han, Sang-Hyuck
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.128-136
    • /
    • 2013
  • Recently, the localization recognition system research has been studied using various sensors according to increased interest in autonomous navigation flight. In case of indoor environment which cannot support GPS information, we have to look for another way to recognize current position. The Image-based localization recognition system has been interested although there are lots of way to know current pose. In this paper, we explain the localization recognition system based on mark and implementation of autonomous navigation flight. In order to apply to real environment which cannot support marks, localization based on real-time 3D map building is discussed.

Autonomous Aerobatic Flight for Fixed Wing Aircraft (고정익 항공기의 자율 곡예비행)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1217-1224
    • /
    • 2009
  • A simple and effective guidance and control scheme that enables autonomous three-dimensional path-following for a fixed wing aircraft is presented. The method utilizes the nonlinear path-following guidance law for the outer loop that creates steering acceleration command based on the desired flight path and the current position and velocity of the vehicle. The scheme considers the gravity in the guidance level, where it is subtracted from the acceleration command to form the specific force acceleration command which the aircraft is better suited to follow than the total acceleration command in the inner-loop. A roll attitude control scheme is also presented that enables inverted flight or sideslip maneuvers such as slow roll and knife-edge. A series of aerobatic maneuvers are demonstrated through simulations to show the potential of the proposed scheme.

Design and Flight Test of Path Following System for an Unmanned Airship (무인 비행선의 자동 경로 추종 시스템 개발 및 비행시험)

  • Jung, Kyun-Myung;Sung, Jae-Min;Kim, Byoung-Soo;Je, Jeong-Hyeong;Lee, Sung-Gun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.498-509
    • /
    • 2010
  • In this paper, a waypoint guidance law Line Tracking algorithm is designed for testing an Unmanned Airship. In order to verify, we develop an autonomous flight control and test system of unmanned airship. The flight test system is composed FCC (Flight Control Computer), GCS (Ground Control System), Autopilot & Guidance program, GUI (Graphic User Interface) based analysis program, and Test Log Sheet for the management of flight test data. It contains flight test results of single-path & multi-path following, one point continuation turn, LOS guidance, and safe mode for emergency.

UAV Autopilot Design under External Disturbances

  • Eun, Youn-Ju;Hyochoong Bang;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.40.3-40
    • /
    • 2002
  • Unmanned Aerial Vehicle(UAV) needs autonomous flight capability to accomplish various mission objectives. For this objective, the autopilot is a key element in the UAV system design. The principal goal of autopilot is to guide the aircraft under varying external disturbances throughout the mission phases. The external disturbances include gravity effect, wind gust, and other unexpected obstacles. The gust affects the aircraft flight performance to a significant extent. UAV's low speed, light weight, and the absence of human judgment makes un predictable gust more dangerous. Autopilot design in general takes the gust effect into account to satisfy flight performance requirement. In this study..

  • PDF

Autonomous Flight of a Drone that Adapts to Altitude Changes (고도 변화에 적응하는 드론의 자율 비행)

  • Jang-Won Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.448-453
    • /
    • 2023
  • As the production of small quadcopter drones has diversified and multi-sensors have been installed in FC due to the spread of MCU capable of high-speed processing, small drones that can perform special-purpose operations rather than simple operations have been realized. Hovering, attitude control, and position movement control were possible through the IMU in the FC mounted on the drone, but control is not easy when GPS connection and video communication are not possible in a closed building with a complex structure. In this study, when encountering an obstacle with a change in altitude in such a space, we proposed a method to overcome the obstacle and perform autonomous flight using optical flow and IR sensors using the Lucas-Kanade method. Through experiments, the drone's altitude flight on stairs that replace the complex structure of a closed space with stable hovering motion has a success rate of 98% within the tolerance of 10 [cm] due to external influences, and reliable autonomous flight up and down is achieved.

Design of Flight Control System for KARI Unmanned Airship (50m급 중고도 무인 비행선의 자동비행시스템 설계)

  • 김성필;주광혁;안이기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2004
  • The flight control system designed for an unmanned airship, which is under development by KARI, is in reduced. First, the dynamic characteristics of the airship are addressed, which are fairly different from those of the nominal aircraft. In order to implement autonomous flight for the unmanned airship, flight control logic is designed including autopilot and guidance law. The autopilot is designed under consideration of the velocity region of the unmanned airship. The guidance laws are implemented in main operational modes such as point navigation, station keeping and spiral up/down for emergency return. Their simulation results are also presented in order to validate performances of the flight control system.

A Flight Control System design for an Unmanned Helicopter

  • Park, Soo-Hong;Kim, Jong-Kwon;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1375-1379
    • /
    • 2004
  • Unmanned Helicopter has several abilities such as vertical Take off, hovering, low speed flight at low altitude. Such vehicles are becoming popular in actual applications such as search and rescue, aerial reconnaissance and surveillance. These vehicles also used under risky environments without threatening the life of a pilot. Since a small aerial vehicle is very sensitive to environmental conditions, it is generally known that the flight control is very difficult problems. In this paper, a flight control system was designed for an unmanned helicopter. This paper was concentrated on describing the mechanical design, electronic equipments and their interconnections for acquiring autonomous flight. The design methodologies and performance of the helicopter were illustrated and verified with a linearized equation of motion. The LQG based estimator and controller was designed and tested for this unmanned helicopter.

  • PDF

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

Implementation of Educational UAV with Automatic Navigation Flight

  • Park, Myeong-Chul;Hur, Hwa-ra
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.29-35
    • /
    • 2019
  • This paper proposes a UAV equipped with an automatic control system for educational purposes such as navigation flight or autonomous flight. The proposed UAV is capable of automatic navigation flight and it is possible to control more precisely and delicately than existing UAV which is directly controlled. And it has the advantage that it is possible to fly in a place out of sight. In addition, the user may arbitrarily change the route or route information to use it as an educational purpose for achieving the special purpose. It also allows you to check flight status by shooting a video during flight. For this purpose, it is designed to check the image in real time using 5.8GHz video transmitter and receiver. The flight information is recorded separately and used as data to judge the normal flight after the flight. The result of the paper can be flighted along the coordinates specified using GPS information. Since it can receive real-time video, it is expected to be used for various education purposes such as reconnaissance of polluted area, achievement of special purpose, and so on.

Development of an Autonomous Situational Awareness Software for Autonomous Unmanned Aerial Vehicles

  • Kim, Yun-Geun;Chang, Woohyuk;Kim, Kwangmin;Oh, Taegeun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.36-44
    • /
    • 2021
  • Unmanned aerial vehicles (UAVs) are increasingly needed as they can replace manned aircrafts in dangerous military missions. However, because of their low autonomy, current UAVs can execute missions only under continuous operator control. To overcome this limitation, higher autonomy levels of UAVs based on autonomous situational awareness is required. In this paper, we propose an autonomous situational awareness software consisting of situation awareness management, threat recognition, threat identification, and threat space analysis to detect dynamic situational change by external threats. We implemented the proposed software in real mission computer hardware and evaluated the performance of situational awareness toward dynamic radar threats in flight simulations.