• Title/Summary/Keyword: Autonomic Nervous Response

Search Result 96, Processing Time 0.023 seconds

Neurological aspects of anhidrosis: differential diagnoses and diagnostic tools

  • Park, Kee Hong;Park, Ki-Jong
    • Annals of Clinical Neurophysiology
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Anhidrosis refers to the condition in which the body does not respond appropriately to thermal stimuli by sweating. Sweating plays an important role in maintaining the body temperature, and its absence should not be overlooked since an elevated body temperature can cause various symptoms, even leading to death when uncontrolled. The various neurological disorders that can induce anhidrosis make a detailed neurological evaluation essential. The medication history of the patient should also be checked because anhidrosis can be caused by various drugs. The tests available for evaluating sweating include the quantitative sudomotor axon reflex sweat test, thermoregulatory sweat test, sympathetic skin response, and electrochemical skin conductance. Pathological findings can also be checked directly in a skin biopsy. This review discusses the differential diagnosis and evaluation of anhidrosis.

PSYCHOPHYSIOLOGICAL CHANGES DURING VIRTUAL REALITY NAVIGATION

  • Kim, Y.Y.;Kim, E.N.;C.Y. Jung;H.D. Ko;Kim, H.T.
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.107-113
    • /
    • 2002
  • We examined the psychophysiological effects of navigation in a virtual reality (VR). Subjects were exposed to the VR, and required to detect specific objects. Ten electrophysiological signals were recorded before, during, and after navigation in the VR. Six questionnaires on the VR experience were acquired from 45 healthy subjects. There were significant changes between the VR period and the pre-VR control period in several psychophysiological measurements. During the VR period, eye blink, skin conductance level, and alpha frequency of EEG were decreased but gamma wave were increased. Physiological changes associated with cybersickness included increased heart rate, eye blink, skin conductance response, and gamma wave and decreased photoplethysmogram and skin temperature. These results suggest an attentional change during VR navigation and activation of the autonomic nervous system for cybersickness. These findings would enhance our understanding for the psychophysiological changes during VR navigation and cybersickness.

  • PDF

The Study on the Role of Prostaglandin in Contraction of Vas Deferens (정관운동에 있어서 prostaglandin 의 역할에 관한 연구)

  • Park, Won-Kyoo
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 1983
  • Prostaglandin(PG) is ubiquitously distributed in most mammalian tissue and their actions are complicated. Especially in autonomic nervous system, there are evidences indicating that PGs act as neuromodulators i.e., PGs, which are released in the vicinity of autonomic neuroeffector junctions, influence the release and the response of the neurotransmitter. Present study was undertaken to elucidate the interrelationship between $PGF_{2\alpha}$ and adrenergic ${\alpha}_2-receptor$ function in electrical field stimulation induced contractile response of vas deferens in rat. Male rat, weighing 150{\sim}200\;g, was sacrificed and vas deferens was obtained. The isolated vas deferens strip was placed between two platinum electrodes in temperature controlled $(37^{\circ}C)$ muscle chamber containing Tyrode's solution and the electrical field stimulation(EFS) induced contraction was recorded with Grass Polygraph(Model 7) via force displacement transducer (FT .03, Grass). The results are summarized as follows: 1) Electrical field stimulation for 1sec( 1 msec, 40 cps) induced contraction of vas deferens was completely blocked by tetrodotoxin. 2) Bretylium caused marked inhibition of the EFS-induced contraction, hut tyramine and cocaine augmented the contraction. 3) EFS-induced contraction was inhibited or little affected in distal portion of vas deferens by norepinephrine or methoxamine, but the contraction was rather augmented by the ${\alpha}-agonists$ in proximal portion. 4) Clonidine inhibited the EFS-induced contraction proportionally to the concentration in distal portion, which was blocked by yohimbine pretreatment, but in the presence of $PGF_{2\alpha}$ the blockade by yohimbine was reversed. 5) Indomethacin pretreatment reduced the effect of clonidine, but addition of $PGF_{2\alpha}$ after washing-out the indomethacin caused the contraction to the control level. From these results it is suggested that PG synthesis is a necessary step and the PG itself has a permissive role in ${\alpha}_2-adrenoceptor$ action in rat vas deferens.

  • PDF

Effects of Central Interleukin-1 on the Cardiovascular Response in Hemorrhaged Rats

  • Kang, Joon-Ho;Jang, Jae-Hee;Ahn, Dong-Kuk;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.89-94
    • /
    • 2004
  • The arterial pressure is regulated by the nervous and humoral mechanisms. The neuronal regulation is mostly carried out by the autonomic nervous system through the rostral ventrolateral medulla (RVLM), a key area for the cardiovascular regulation, and the humoral regulation is mediated by a number of substances, including the angiotensin (Ang) II and vasopressin. Recent studies suggest that central interleukin-1 (IL-1) activates the sympathetic nervous system and produces hypertension. The present study was undertaken to elucidate whether IL-1 and Ang II interact in the regulation of cardiovascular responses to the stress of hemorrhage. Thus, Sprague-Dawley rats were anesthetized and both femoral arteries were cannulated for direct measurement of arterial pressure and heart rate (HR) and for inducing hemorrhage. A guide cannula was placed into the lateral ventricle for injection of IL-1 $(0.1,\;1,\;10,\;20\;ng/2\;{\mu}l)$ or Ang II $(600\;ng/10\;{\mu}l)$. A glass microelectrode was inserted into the RVLM to record the single unit spike potential. Barosensitive neurons were identified by an increased number of single unit spikes in RVLM following intravenous injection of nitroprusside. I.c.v. $IL-1\;{\beta}$ increased mean arterial pressure (MAP) in a dose-dependent fashion, but HR in a dose-independent pattern. The baroreceptor reflex sensitivity was not affected by i.c.v. $IL-1\;{\beta}$. Both i.c.v. $IL-1\;{\alpha}\;and\;{\beta}$ produced similar increase in MAP and HR. When hemorrhage was induced after i.c.v. injection of $IL-1\;{\beta}$, the magnitude of MAP fall was not different from the control. The $IL-1\;{\beta}$ group showed a smaller decrease in HR and a lower spike potential count in RVLM than the control. MAP fall in response to hemorrhage after i.c.v. injection of Ang II was not different from the control. When both IL-1 and Ang II were simultaneously injected i.c.v., however, MAP fall was significantly smaller than the control, and HR was increased rather than decreased. These data suggest that IL-1, a defense immune mediator, manifests a hypertensive action in the central nervous system and attenuates the hypotensive response to hemorrhage by interaction with Ang II.

Canonical Correlation of 3D Visual Fatigue between Subjective and Physiological Measures

  • Won, Myeung Ju;Park, Sang In;Whang, Mincheol
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.785-791
    • /
    • 2012
  • Objective: The aim of this study was to investigate the correlation between 3D visual fatigue and physiological measures by canonical correlation analysis enabling to categorical correlation. Background: Few studies have been conducted to investigate the physiological mechanism underlying the visual fatigue caused by processing 3D information which may make the cognitive mechanism overloaded. However, even the previous studies lack validation in terms of the correlation between physiological variables and the visual fatigue. Method: 9 Female and 6 male subjects with a mean age of $22.53{\pm}2.55$ voluntarily participated in this experiment. All participants were asked to report how they felt about their health sate at after viewing 3D. In addition, Low & Hybrid measurement test(Event Related Potential, Steady-state Visual Evoked Potential) and for evaluating cognitive fatigue before and after viewing 3D were performed. The physiological signal were measured with subjective fatigue evaluation before and after in watching the 3D content. For this study suggesting categorical correlation, all measures were categorized into three sets such as included Visual Fatigue set(response time, subjective evaluation), Autonomic Nervous System set(PPG frequency, PPG amplitude, HF/LF ratio), Central Nervous System set(ERP amplitude P4, O1, O2, ERP latency P4, O1, O2, SSVEP S/N ratio P4, O1, O2). Then the correlation of three variables sets, canonical correlation analysis was conducted. Results: The results showed a significant correlation between visual fatigue and physiological measures. However, different variables of visual fatigue were highly correlated to respective HF/LF ratio and to ERP latency(O2). Conclusion: Response time was highly correlated to ERP latency(O2) while the subjective evaluation was to HF/LF ratio. Application: This study may provide the most significant variables for the quantitative evaluation of visual fatigue using HF/LF ratio and ERP latency based human performance and subjective fatigue.

Effects of the Combination of Oxygen and Color Light on Stress Relaxation: Psychological and Autonomic Responses (산소와 색채 조명 자극의 조합이 스트레스 완화에 미치는 효과: 심리 및 자율신경계 반응을 중심으로)

  • Jang, Eun-Hye;Kim, Ah-Young;Jang, Yongwon;Kim, Bo-Seong;Choi, Yong-Bok;Kim, Seung-Chul;Lee, Sang-Kone;Kim, Seunghwan
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • Stress is accompanied by changes in the responses of the autonomic nervous system, and the heart rate variability (HRV) index is a quantitative marker that reflects autonomic responses induced by stressors. In this study, we observed changes in the autonomic responses induced by combinations of 30% oxygen administration and color light for stress relaxation. In all, 42 participants produced stress symptoms over the preceding two weeks, as rated on the stress response scale. After stress assessment, they were exposed to three therapeutic conditions, and electrocardiogram (ECG) signals were recorded before, during, and after therapy. The three therapy conditions consisted of only 30% oxygen administration with white light, a combination of 30% oxygen and orange light, and a combination of 30% oxygen and blue light. The HRV indices extracted from ECG signals were heart rate (HR), the standard deviation of the RR interval (SDNN), the mean square root of consecutive RR interval difference values (RMSSD), the low frequency component of HRV (LF), the high frequency component (HF), and the LF/HF ratio. These indicators were used to compare mean values before and after therapy. The results showed that HR and the LF/HF ratio were significantly lower after therapy than before it. In particular, the condition with 30% oxygen and blue light yielded significantly greater RMSSD and HF increases, as well as decreases in LF/HF ratio than in other two conditions. Our results suggest that therapy with 30% oxygen and blue light is the most effective for the relaxation of stress, which implies autonomic balance by parasympathetic activation.

A Study on Driver's Physiological Response in Train Simulator (열차 시뮬레이터 조작 시 운전자의 생체신호 변화에 대한 연구)

  • Jang, Hye-Yoen;Jang, Jae-Ho;Kim, Tea-Sik;Han, Chang-Soo;Han, Jung-Soo;Ahn, Jae-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.129-135
    • /
    • 2006
  • he purpose of this study is to measure bio-signal to investigate the driver's physiological response change under real situation using train simulator. The train simulator used in this study is KTX model and according to changes of driving situation, The bio-signal controlled by autonomic nervous system, such as GSR(Galvanic Skin Response), SpO2(Saturation percent O2), HR(Heart Rate), ECG(Electrocardiograph), EEG(Electroencephagram) and movement and response of eye were measured. Statistically significant difference in bio-signal data and eye movement activity pattern were investigated under several different driving speeds using analysis of variance (p<0.05). The GSR and HR value measured in average and mission speed operation is higher than in high-speed operation. β wave of EEG in average speed operation become more activated than in high speed operation. In accordance with a characteristic of rail vehicle, movement and response of eye in high-speed operation requiring relatively simple maneuver become less activated than in either average or mission speed operations. Conclusively, due to more careful driving controls in average and mission speed operation are required than in high-speed operation, level of mental and physical stresses of train driver was increased and observed through changes of bio-signal and eye movement measured in this study.

Psychophysiologic Response in Patients with Panic Disorder (공황장애환자의 정신생리적 반응)

  • Chung, Sang-Keun;Cho, Kwang-Hyun;Jung, Ae-Ja;Park, Tae-Won;Hwang, Ik-Keun
    • Sleep Medicine and Psychophysiology
    • /
    • v.8 no.1
    • /
    • pp.52-58
    • /
    • 2001
  • Objectives: An Increased level of psychophysiologic arousal and diminished physiologic flexibility would be observed in patients with panic disorder compared with a normal control group. We investigated the differences of psychophysiologic response between patients with panic disorder and normal control to examine this hypothesis. Methods: Ten Korean patients with panic disorder who met the diagnostic criteria of DSM-IV were compared with 10 normal healthy subjects. In psychological assessment, levels of anxiety and depression were evaluated by State-Trait Anxiety Inventory, Beck's Depression Inventory and Hamilton Rating Scale For Anxiety and Depression. Heart rate, respiration rate, electrodermal response, and electromyographic activity were measured by biofeedback system (J & J I-330 model) to determine psychophysiologic responses on autonomic nervous system. Stressful tasks included mental arithmetic, video game, hyperventilation, and talking about a stressful event. Psychophysiologic responses were measured according to the following procedures : baseline(3 min)-mental arithmetic (3 min)-rest (3 min)-video game (3 min)-rest (3 min)-hyperventilation (3 min)-rest (3 min)-talking about a stressful event (3 min). Results: The baseline level of anxiety and depression, electrodermal response (p=.017), electromyographic activity (p=.047) and heart rate (p=.049) of patients with panic disorder were significantly higher than those of the normal subject group. In electrodermal response, patient group had significantly higher startle response than the control group during hyperventilation (p=.001). Startle and recovery responses of heart rate in the patient group were significantly lower than responses in the control group during mental arithmetic (p=.007, p=.002). In electrodermal response of the patient group, startle response was significantly higher than recovery response during mental arithmetic (p=.000) and video game task (p=.021). Recovery response was significantly higher than startle response in respiratory response during hyperventilation. Conclusion: The results showed that patients with panic disorder had higher autonomic arousal than the control group, but the physiologic flexibility was variable. We suggest that it is helpful for treatment of panic disorder to decrease the level of autonomic arousal and to recover the physiologic flexibility in certain stressful event.

  • PDF

The Effects of Habituation and Sensitization on Psychophysiological Differentiation of Responses to Auditory Stimulation with Automobile Horns

  • Estate M. Sokhadze;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 2000
  • Psychoacoustic characteristics of automobile horns play significant role in resulting subjective evaluation and psychphysiological reactions. However, comparison and differentiation of physiological responses to commercially available horns is a complicated task due to the small contrast in technical features of horns and the influence of such processes as habituation on physiological outcome with the increased number of auditory stimulation trials. In a study on 10 college students, there was performed comparative analysis of reactivity of physiological responses mediated by central and autonomic nervous systems in order to identify the role of habituation on decrement of psychophysiological responsivity and assess the ability to differentiate subjectively most and least preferred, as well as most and least appropriate horns according to physiological manifestations. The EEG and autonomic responses to 7 automobile horns were analyzed during 3 blocks of trials, with varying order of stimuli and changed acoustic parameters of horns in each block. Thus, responses were analyzed for totally 21 trials of auditory stimulation. It was shown that electrodermal and cardiovascular responses have different reactivity patterns to repeated stimulation: skin conductance measures habituated, cardiac reactivity showed no signs of habituation, and the vascular response demonstrated sensitization. The temporal EEG exhibited marked habituation of fast beta band power, while alpha-blocking effect did not habituate during the course of experiment. Differentiation of physiological responses of most and least preferred and appropriate horns was possible in our study, however, some cardiovascular reactivity measures differentiated during the entire course of the experiment, while EEG and electrodermal parameters showed significant differences only during first block of trials, and were later affected by the habituation.

  • PDF

Exocrine Pancreatic Secretion in Response to Electrical Stimulation of Reticular Formation in Mesencephalone in Rats (흰쥐에서 중뇌망상체의 전기자극이 췌장액 분비에 미치는 영향)

  • Park, Hyoung-Jin;Lee, Yun-Lyul;Kwon, Hyeok-Yil;Shin, Won-Im
    • The Korean Journal of Physiology
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 1986
  • It has been well documented that the peripheral autonomic nervous system plays an important role in exocrine pancreatic secretion. However, the role of the central nervous system in pancreatic function is still obscure even though the central nervous system has been known to control gastrointestinal functions through the autonomic nervous system. Since the reticular formation in the mesencephalone seems to integrate the autonomic function, the present study was undertaken to investigate a possible influence of the reticular formation upon the exocrine pancreatic secretion. Twenty·two albino rats fasted for 24 hours were anesthetized by intraperitoneal injection of urethane in a dose of 1 g/kg, The pancreatic duct was cannulated to collect pancreatic juice and bile juice was diverted to the jejunum. The gastroduodenal junction was ligated to Prevent passage of gastic juice into the duodenum. A pair of electrodes were bilaterally inserted in the reticualr formation of the mesencephalone with aid of a stereotaxic apparatus. When the volume of pancreatic juice secreted for 10 min became constant, the reticular formation was electrically stimulated for 10 min. Parameters of the electical stimulation was 1.3V, 40 Hz and 2 msec. When the pancreatic secretion returned to the level before the electrical stimulation, cervical vagotomy (11 rats) or administration of propranolol (11 rats) in a dose of 0.1 mg/kg through the jugular vein was carried out. Ten minutes after the treatment, the electrical stimulation of the reticular formation was repeated. The brain was fixed by perfusion of 10% formaline solution through the heart, and then placement of the electrode tip was examined histologically. Protein concentration and amylase activity in samples of Pancreatic secretion were measured. The electrical stimulation of the reticular formation significantly increased in volume $({\mu}l/10\;min)$, Protein output $({\mu}g/10\;min)$ and amylase output (U/10 min) in the pancreatic secretion. The stimulatroy effects were not affected by the cervical vagotomy but completely abolished by propranolol. Meantime, it was also observed that both vagotomy and propranolol significantly reduced the pancreatic secretory function. These results indicate that the reticular formation in the mesencephalone may exert a stimulatory effect upon the Pancreatic secretory function not through the vagus nerve but through the sympathetic pathway in anesthetized rats.

  • PDF