• 제목/요약/키워드: Automotive system

검색결과 4,202건 처리시간 0.026초

자동차 에어컨 비정상과정 시뮬레이션 (Transient Simulation of an Automotive Air-Conditioning System)

  • 오상한;원성필
    • 설비공학논문집
    • /
    • 제13권11호
    • /
    • pp.1089-1096
    • /
    • 2001
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as the key design variable. Therefore, understanding of the overall transient characteristics of the system is essential to the preliminary design as well as steady-state characteristics. The objective of this study is to develop a computer simulation model and estimate theoretical1y the transient performance of an automotive air-conditioning system. To accomplish this, a mathematical modelling of each component, such as compressor, condenser, expansion valve, and evaporator, is presented first of all. For a detailed calculation, condenser and evaporator are divided into many subsections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in an attempt to simplify the ana1ysis, but the quasi-static ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. The developed simulation model is validated with a comparison to laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed fairly well wish those of test data in this case.

  • PDF

유량 제어 밸브 방식이 DME 고압 연료 펌프의 성능에 미치는 영향 (Effect of Flow Control Valve Type on the Performance of DME High Pressure Fuel Pump)

  • 신윤섭;이기수;김현철;정수진;박경용;서현규
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.67-73
    • /
    • 2013
  • This experimental work described the effect of flow control valve type on the performance of wobble plate type fuel pump for the stable DME fuel supply. In order to study this, different four types of flow control valves (ITV, SCV, IMV and MPROP) were installed on the wobble plate fuel pump, and fuel flow rate, torque, and temperature variation of pump were investigated under various operating conditions by using pump performance test system. It was revealed that wobble plate type fuel pump worked well with ITV and SCV control valve, and the flow rate and torque of fuel pump was in proportion to the value of valve open duty. The maximum flow rate and torque of fuel pump were achieved around the 50% duty of control valve. Temperature variation at all pump measuring points were under $60^{\circ}C$ which is acceptable.

대형 상용차량 하이브리드 전동식 조향 시스템 주행 성능평가를 위한 HILS 시스템 개발 (Development of HILS System for Performance Evaluation of a Heavy Commercial Vehicle Hybrid Electric Power Steering System)

  • 유춘식;최규재
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.103-110
    • /
    • 2017
  • Most commercial vehicles have adopted the hydraulic power steering system. To reduce fuel consumption and to improve steering controllability, a hybrid electric power steering system is being developed for commercial vehicles. In this study, the HILS (Hardware In the Loop Simulation) system equipped with a commercial vehicle hybrid electric power steering system was developed and the vehicle dynamic performance of a truck with the steering system was evaluated. The hybrid electric power steering system is composed of the EHPS motor pump, column mounted EPS system, and ball nut steering gear box for heavy commercial vehicles. The accuracy of vehicle models equipped with the HILS system was verified with comparisons between the simulation results and field test results. The road reaction forces of the steering system were generated from the vehicle model and verified using field test results. Step steering tests using the verified HILS system were carried out and the performance of a newly developed commercial vehicle hybrid electric power steering system was evaluated.

사이클론 오일분리 장치 형상변화에 따른 유동 및 오일분리 성능에 관한 해석적 연구 (A Numerical Analysis of Flow Characteristics and Oil Separation Performance for Cyclone Oil Separator Designs)

  • 조용석;이성욱;우근섭;윤여빈;박영준;이덕영;김현철;나병철
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.22-28
    • /
    • 2008
  • A closed type crankcase ventilation system has been adopted to engines to prevent emission of blow-by gas to atmosphere. In the early closed type crankcase ventilation system, blow-by gas which contains engine lubricating oil is re-circulated into the intake system. The blow-by gas containing oil mist leads to increased harmful emissions and engine problems. To reduce loss of the engine oil, a highly-efficient oil separation device is required. Principle of a cyclone oil separator is to utilize centrifugal force in the separator and, therefore, oil separator designs depend on rotational flow which causes the centrifugal force. In this paper, flow characteristics and oil separation performances for cyclone type designs are calculated with CFD methodology. In the CFD model, oil particle was injected on a inlet surface with Rosin-Rammler distribution and uniform distribution. The major design parameters considered in the analysis model are inlet area, cone length and outlet depth of the oil separator. As results, reducing inlet area and increasing cone length increase oil separation performance. Changes in outlet depth could avoid interference between rotational flow and outlet flow in the cyclone oil separator.

자동차용 에어컨 시스템의 성능해석에 관한 연구 (A Study on the Performance Analysis of Automotive Air Conditioning System)

  • 이대웅;유성연
    • 설비공학논문집
    • /
    • 제14권4호
    • /
    • pp.304-314
    • /
    • 2002
  • Performance analysis of the automotive air-conditioning system is conducted by using computer simulation, and performance tests are carried out by using the climate wind tunnel in order to verify simulation. Evaporator and condenser were modeled by using empirical correlation which was obtained from calorimeter data, and compressor was modeled by using map based method. The steady state thermodynamic conditions of refrigerant satisfying mass and energy balance were assumed in the simulation program for automotive airconditioning system. The system performance was analyzed by finite difference method until differential air enthalpy between evaporator inlet and outlet becomes converged. Simulation results are in good agreement with experimental results at most operating conditions. Variation of discharge temperature and pressure of compressor, outlet temperature of evaporator, cooling capacity, and COP were investigated in term of air volume flow rate for evaporator, compressor capacity, compressor speed, superheat of thermostatic expansion valve, and diameter of suction line.

TCS를 위한 HIL 시뮬레이터 개발에 관한 연구 (Development of Hardware-in-the-loop Simulator for TCS)

  • 서명원;이한주;박윤기
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.194-205
    • /
    • 1999
  • The prevalence of microprocessor-based controllers in automotive systems has greatly increased the need for tools which can be used to validate and test control systems over their full range of operation. The objective of this paper is to develop a real time simulator of traction control system by the methodology of using hardware-in-loop simulation based on a personal computer. By use of this simulator, the analysis of commercial electronic control units and components for TCS were performed successfully. The simulator of this research can be applied to development of more advanced control systems(suck as vehicle dynamics control system) and other automotive system.

  • PDF

DEVELOPMENT OF A NETWORK-BASED TRACTION CONTROL SYSTEM, VALIDATION OF ITS TRACTION CONTROL ALGORITHM AND EVALUATION OF ITS PERFORMANCE USING NET-HILS

  • Ryu, J.;Yoon, M.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.687-695
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units(ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electric throttle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

Performance Evaluation of a Variable Frequency Heat Pump Air Conditioning System for Electric Bus

  • Peng, Qinghong;Du, Qungui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권1호
    • /
    • pp.13-22
    • /
    • 2015
  • This study presents a simulation model of a heat pump air conditioning system with a variable capacity compressor and variable speeds fans for electric bus. An experimental sample has been developed in order to check results from the model. Effects on system performance of such working conditions as compressor speed, evaporator fans speeds and the condenser fans speeds have been simulated by means of developed model. The results show that the three speeds can be adjusted simultaneously according to actual working condition so that the AC system can operate under the optimum state which the control objects want to achieve. It would be a good and simple solution to extend the driving ranges of EVs because of the highest efficiency and the lowest energy consumption of AC system.

커먼 레일 시스템 고압 연료 분사용 스월 노즐 인젝터의 분사 특성에 관한 연구 (A Study on the Injection Characteristics of Swirl Nozzle Injector in Common-rail System for High Pressure Fuel Injection)

  • 신윤섭;이기수;김현철;곽상신;신석신;서현규
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.89-95
    • /
    • 2013
  • In this work, the evaluation of swirl nozzle injector performance was conducted by investigating effective area ($A_{eff}$), injection mass ($m_{inj}$), injection rate ($Q_{inj}$), and injection delay ($t_{delay}$) under various test conditions. To achieve these, fuel injection analysis system which was composed of fuel supply system, injection system, and control system was installed. At the same time, the swirl nozzle that had 12 orifice hole with $120^{\circ}$ injection angle was used in this work. It was revealed that the difference of injection mass ($m_{inj}$) between base and swirl nozzle injector increased as the injection pressure ($P_{inj}$) and energizing duration ($t_{eng}$) decreased under the same test conditions. The maximum injection rate ($Q_{inj}$) of swirl nozzle injector was higher than base nozzle injector about 2~5%. The injection performance of swirl nozzle was better than base nozzle at low injection pressure ($P_{inj}$) and short energizing duration ($t_{eng}$) conditions.

EGR 가스 폐열회수에 의한 디젤엔진의 연비에 미치는 ATF 워밍업의 영향 (Effect of Fast ATF Warm-up on Fuel Economy Using Recovery of EGR Gas Waste Heat in a Diesel Engine)

  • 허형석;이동혁;강태구;이헌균;김태진
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.25-32
    • /
    • 2012
  • Cold start driving cycles exhibit an increases in friction losses due to the low temperatures of metal components and media compared to the normal operating engine conditions. These friction losses are adversely affected to fuel economy. Therefore, in recent years, various techniques for the improvement of fuel economy at cold start driving cycles have been introduced. The main techniques are the upward control of coolant temperature and the fast warm-up techniques. In particular, the fast warm-up techniques are implemented with the coolant flow-controlled water pump and the WHRS (waste heat recovery system). This paper deals with an effect of fast ATF (automatic transmission fluid) warm-up on fuel economy using a recovery system of EGR gas waste heat in a diesel engine. On a conventional diesel engine, two ATF coolers have been connected in series, i.e., an air-cooled ATF cooler is placed in front of the condenser of air conditioning system and a water-cooled one is embedded into the radiator header. However, the new system consists of only a water-cooled heat exchanger that has been changed into the integrated structure with an EGR cooler to have the engine coolant directly from the EGR cooler. The ATF cooler becomes the ATF warmer and cooler, i.e., it plays a role of an ATF warmer if the temperature of ATF is lower than that of coolant, and plays a role of an ATF cooler otherwise. Chassis dynamometer experiments demonstrated the fuel economy improvement of over 2.5% with rapid increase in the ATF temperature.