• 제목/요약/키워드: Automotive system

검색결과 4,195건 처리시간 0.03초

자동차 및 식품 품질경영시스템 지침 (Guidelines for Automotive and Food Quality Management System)

  • 최성운
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2006년도 춘계공동학술대회
    • /
    • pp.355-362
    • /
    • 2006
  • This paper is to introduce guidelines for automotive and food quality management system. International standards such as ISO/TS 16949 and ISO 15161 are considered. This study is to discuss particular requirements for the application of ISO 9001 : 2000 for automotive production and relevant service part organization , and guidelines on the application of ISO 9001 : 2000 for the food and drink industry.

  • PDF

다극 브레이크 모터의 긴 전류 제어주기 고속영역 제어 (High Speed Control of a Multi-pole Brake Motor Under a Long Current Control Period)

  • 김도군;박홍주;박규성;김선형;이근호
    • 제어로봇시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.137-144
    • /
    • 2015
  • In hybrid or electric vehicles, the hydraulic brake system must be controlled cooperatively with the traction motor for regenerative braking. Recently, a motor driven brake system with a PMSM (Permanent Magnet Synchronous Motor) has replaced conventional vacuum boosters to increase regenerative power. Unlike industry motor controls, additional source codes such as functional safety are essential in automotive applications to meet ISO26262 standards. Therefore, the control logic execution time increases, which also causes an extension of the motor current control period. The increased current control period makes precise motor current control challenging inhigh speed ranges where the motor is driven by high frequency. In this paper, a PWM update strategy and a time delay compensation method are suggested to improve current control and system performance. The proposed methods are experimentally verified.

EMB 시스템의 모델 기반 센서 고장 검출 알고리즘 개발 (Model-based Sensor Fault Detection Algorithm for EMB System)

  • 황우현;양이진;허건수
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2012
  • The brake-by-wire technology is a new automotive chassis system that allows standard braking operations by electronic components with lighter weights and faster response. The brake-by-wire units such as EMB (Electro-Mechanical Brake) are controlled by electronic sensors and actuators and, thus, the fault diagnosis is essential for implementation. In this study, a model-based fault diagnosis system is developed for the sensors based on the analytical redundancy method. The fault detection algorithm is verified in simulations for various faulty cases. A test bench is built including the EMB unit and the performance of the proposed fault diagnosis system is evaluated through the experiment.

압축기 성능 맵이 자동차용 가압형 고분자전해질형 연료전지 시스템 효율에 미치는 영향 연구 (A Study of the Effect of Compressor Performance Map on the Efficiency of High-pressure Operating PEMFC Systems in Automotive Applications)

  • 조동훈;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.604-611
    • /
    • 2012
  • For the commercialization of fuel cell powered vehicle, it is highly important to improve the performance and efficiency of an automotive polymer electrolyte membrane fuel cell (PEMFC) system. The performance and efficiency of PEMFC systems are significantly influenced by their operating conditions. Among these conditions, the system operating pressure is considered as the one of the main factors. In this study, to investigate the effects of operating pressure on the performance and efficiency of automotive PEMFC systems, two types of high-pressure operating PEMFC systems adopting two different compressors (i. e. different performance maps) are modeled by using MATLAB/Simulink environment. The PEMFC system efficiency and parasitic compressor power are mainly analyzed and compared for the two types of high-pressure operating PEMFC systems under the same system net power conditions. It is expected that this kind of study can contribute to provide basic insight into the operating strategies of high-pressure operating PEMFC systems for automotive use.

Urea-SCR 분사시스템의 DeNOx 저감 성능 향상과 NH3 슬립저감을 위한 모델 기반 제어알고리즘 개발 및 구현 (The Development and Implementation of Model-based Control Algorithm of Urea-SCR Dosing System for Improving De-NOx Performance and Reducing NH3-slip)

  • 정수진;김우승;박정권;이호길;오세두
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.95-105
    • /
    • 2012
  • The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia ($NH_3$) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and $NH_3$ slip reduction in the SCR system. This paper investigated NOx and $NH_3$ emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and $O_2$ for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm can not estimate $NH_3$ absorbed on the catalyst. Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated on the numerical model describing physical and chemical phenomena in SCR system. One channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.

PEM 연료전지 시스템 모델링-자동차용 연료전지 시스템의 주요 작동 변수 변경에 따른 시스템 효율 민감도 분석 (Modeling of PEM Fuel Cell System-Sensitivity Analysis of System Efficiency with Different Main Operating Parameters of Automotive Fuel Cell System)

  • 김한상;강병길;원권상
    • 한국수소및신에너지학회논문집
    • /
    • 제30권5호
    • /
    • pp.401-410
    • /
    • 2019
  • The operating conditions greatly impact the efficiency and performance of polymer electrolyte membrane (PEM) fuel cell systems and must be properly managed to ensure better performance and efficiency. In particular, small variations in operating conditions interact with each other and affect the performance and efficiency of PEM fuel cell systems. Thus, a systematic study is needed to understand how small changes in operating conditions affect the system performance and efficiency. In this paper, an automotive fuel cell system (including cell stack and balance of plant [BOP]) with a turbo-blower was modeled using MATLAB/Simulink platform and the sensitivity analyses of main operating parameters were performed using the developed system model. Effects of small variations in four main parameters (stack temperature, cathode air stoichiometry, cathode pressure, and cathode relative humidity) on the system efficiency were investigated. The results show that cathode pressure has the greatest potential impact on the sensitivity of fuel cell system efficiency. It is expected that this study can be used as a basic guidance to understand the importance of achieving accurate control of the fuel cell operating conditions for the robust operation of automotive PEM fuel cell systems.