• 제목/요약/키워드: Automotive system

검색결과 4,202건 처리시간 0.029초

자동차 고장예지시스템의 기술동향 연구 (Investigation of Technological Trends in Automotive Fault Prognostic System)

  • 알지안티 이스마일;정원
    • 산업경영시스템학회지
    • /
    • 제36권1호
    • /
    • pp.78-85
    • /
    • 2013
  • Since the basic built-in-test, prognostic health management (PHM) has evolved into more sophisticated and complex systems with advanced warning and failure detection devices. Aerospace and military systems, manufacturing equipment, structural monitoring, automotive electronic systems and telecommunication systems are examples of fields in which PHM has been fully utilized. Nowadays, the automotive electronic system has become more sophisticated and increasingly dependent on accurate sensors and reliable microprocessors to perform vehicle control functions which help to detect faults and to predict the remaining useful life of automotive parts. As the complication of automotive system increases, the need for intelligent PHM becomes more significant. Given enormous potential to be developed lays ahead, this paper presents findings and discussions on the trends of automotive PHM research with the expectation to offer opportunity for further improving the current technologies and methods to be applied into more advanced applications.

평균값 모델을 활용한 WGT 디젤엔진의 과급압력 및 EGR율 보정 방법 개발 (Development of the Calibration Method for the Boost Pressure and EGR Rate of a WGT Diesel Engine Using Mean Value Model)

  • 정재우;김남호;임창현;김덕진;김기용
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.319-329
    • /
    • 2016
  • Globally, many researchers have been trying to improve the fuel economy of a vehicle for satisfying future $CO_2$ regulation and minimizing air pollution problem. For the same background, diesel engine and vehicle system optimization using simulation models have been key technologies for the improvement of vehicle system efficiency. Therefore, in this study, calibration method for the air breathing system of a WGT diesel engine using mean value model has been composed for efficient engine and vehicle optimization simulation researches. And virtual WGT performances have been calculated for a 2 cylinder downsized diesel engine system. From these researches, the calibration method for the boost pressure and EGR rate of a virtual diesel engine related with WGT performances could be composed and some of technical issue related with downsized diesel engine could be investigated.

응답 시간 해석 도구를 이용한 실시간 분산 제어 시스템의 시간 해석 (Timing Analysis of Distributed Real-time Control System using Response-time Analysis Tool)

  • 최재범;신민석;선우명호;한석영
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.194-203
    • /
    • 2005
  • The process of guaranteeing that a distributed real-time control system will meet its timing constraints, is referred to as schedulability analysis. However, schedulability analysis algorithm cannot be simply used to analyze the system because of complex calculations of algorithm. It is difficult for control engineer to understand the algorithm because it was developed in a software engineer's position. In this paper we introduce a Response-time Analysis Tool(RAT) which provides easy way far system designer to analyze the system by encapsulating calculation complexity. Based on the RAT, control engineer can verify whether all real-time tasks and messages in a system will be completed by their deadline in the system design phase.

NONLINEAR MODEL-BASED CONTROL OF VANE TYPE CONTINUOUS VARIABLE VALVE TIMING SYSTEM

  • Son, M.;Lee, M.;Lee, K.;SunWoo, M.;Lee, S.;Lee, C.;Kim, W.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.555-562
    • /
    • 2007
  • The Variable Valve Timing(VVT) system for high performance is a key technology used in newly developed engines. The system realizes higher torque, better fuel economy, and lower emissions by allowing an additional degree of freedom in valve timing during engine operation. In this study, a model-based control method is proposed to enable a fast and precise VVT control system that is robust with respect to manufacturing tolerances and aging. The VVT system is modeled by a third-order nonlinear state equation intended to account for nonlinearities of the system. Based on the model, a controller is designed for position control of the VVT system. The sliding mode theory is applied to controller design to overcome model uncertainties and unknown disturbances. The experimental results suggest that the proposed sliding mode controller is capable of improving tracking performance. In addition, the sliding mode controller is robust to battery voltage disturbance.

Evaluation of the characteristics of the reflection plate to measure defects in the invisible area using infrared thermography

  • Kim, Sang Chae;Park, Il Cheol;Kang, Chan Geun;Jung, Hyunchul;Chung, Woon Kwan;Kim, Kyeong Suk
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.856-862
    • /
    • 2020
  • Defect inspection system for industrial applications takes the important portion. Non-destructive inspection method has been significantly improved. Infrared thermography, as one of method for non-destructive inspection, can provide relatively precise data and quick inspection time. This study, it was performed to measure defect according to the measurement limit of the non-visible areas such as the back surface of the pipe using reflection plate using reflection plate based on Infrared thermography. The materials of the reflection plate were determined in consideration of the space limitation and the thermal characteristics, and defects were detected by the manufactured reflection plate. Detection of defect in non-visible area using the candidate materials for reflection plate was conducted.

실업계 고등학교용 자동차 전기회로 실습 시스템의 개발 (Development of Experimental System for Automotive Electrical Circuit in Technical High School)

  • 이용주;서영달
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.154-160
    • /
    • 2007
  • The experimental system, developed in this research, is a teaching material that trains and practices automobile electric circuit in technical high school. This system consists of a textbook, 15 kinds of instruments and 62 kinds of 'Flash' animations. Textbook includes automobile electric circuits and experimental process. Instruments have 23 kinds of drills. Its is composed of electrical relays, motors, switches, light bulbs, electrical lines and power unit so on. 'Flash' animation displays an electrical current flow on circuits actually. Both Dacum method and ISD skill have been conducted to analysis job and design syllabus. The experimental system have been implemented on technical high school class to evaluate its objectivity and effect. It is expected that this system can contribute to studying of car service.

전기 동력 이륜차의 회생제동에 따른 구동효율 향상에 관한 평가 연구 (The Test Study on Driving Efficiency Improvement of Two-wheeled Electric Vehicle according to Regenerative Braking)

  • 조수연;서동현;박준성;신외경
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.635-641
    • /
    • 2016
  • Regenerative braking performance of an electrically powered vehicle is closely related to driving distance per battery charge. An electric vehicle uses appropriate amounts of mechanical braking force and electromagnetic regenerative braking force to recover energy and increase driving efficiency. In particular, when it drives on a downhill road, energy recovery rate is maximized through regenerative braking during coasting based on the mass inertia of the vehicle. Since an electric two-wheeled vehicle covered in this paper is lighter than an electric four-wheeled vehicle, the improvement of its driving distance per battery charge through regenerative braking is different from an electric four-wheeled vehicle. This study compared the driving characteristics of an electric two-wheeled vehicle based on regenerative braking. Two driving test modes were simulated with a chassis dynamometer system. By analyzing the measurement of a chassis dynamometer, the driving characteristics of a two-wheel electric vehicle, such as driving efficiency, were analyzed. In addition, test results were reviewed to draw the limitations of conventional test methods for regenerative braking performance of an electric two-wheel vehicle.

DEVELOPMENT OF A NEW MISFIRE DETECTION SYSTEM USING NEURAL NETWORK

  • Lee, M.;Yoon, M.;SunWoo, M.;Park, S.;Lee, K.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.637-644
    • /
    • 2006
  • The detection of engine misfire events is one of major concerns in engine control due to its negative effect on air pollution and engine performance. In this paper, a misfire detection system based on crankshaft angular speed fluctuation is developed. Synthetic variable method is adopted for the preprocessing of crankshaft angular speed. This method successfully estimates the work output of each cylinder by finding the effect of combustion energy on the crankshaft rotational speed or acceleration after virtually removing the effect of the internal inertia forces from the measured crankshaft speed signals. The detection system is developed using neural network with the revised synthetic angular acceleration as input which is derived from the preprocessing. Mathematical simulation is carried out for developing and verifying the misfire detection system. Finally, the reliability of the developed system is validated through an experiment.

MODELING AND PI CONTROL OF DIESEL APU FOR SERIES HYBRID ELECTRIC VEHICLES

  • HE B.;OUYANG M.;LU L.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.91-99
    • /
    • 2006
  • The diesel Auxiliary Power Unit (APU) for vehicle applications is a complex nonlinear system. For the purpose of this paper presents a dynamic average model of the whole system in an entirely physical way, which accounts for the non-ideal behavior of the diode rectifier, the nonlinear phenomena of generator-rectifier set in an elegant way, and also the dynamics of the dc load and diesel engine. Simulation results show the accuracy of the model. Based on the average model, a simple PI control scheme is proposed for the multivariable system, which includes the steps of model linearization, separate PI controller design with robust tuning rules, stability verification of the overall system by considering it as an uncertain one. Finally it is tested on a detailed switching model and good performances are shown for both set-point following and disturbance rejection.

A Study on the Methodology for Determining Dynamic Loadings of Automotive Suspension System Using Measurement and Modeling

  • 김호용;이재곤;박용국
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.262-271
    • /
    • 1999
  • To design suspension system and estimate its durability , the loading history of each suspension part exposed to various operation conditions should be known from either measurement or computations. Based on these results, stress analysis is carried out to obtain the optimal shape and to reduce the production cost through the proper selection of manufacturing process. In this paper, first the measurement of 3-directional accelerations of wheel center using an accelerometer are undertaken from a vehicle running on Belgian road. Then the data measured from experiments are pre-processed with filtering . Based on the pre-processed data the methodology for determining the dynamic loading to each suspension part is developed by simply modeling the suspension system with ADAMS software. Eventually , it is expected that dynamic loadings can be used for the dynamic stress and fatigue analyses.

  • PDF