• 제목/요약/키워드: Automotive pedal arm

검색결과 3건 처리시간 0.017초

다구찌 기법을 이용한 자동차 페달 암의 형상 최적설계 (Shape Optimal Design of an Automotive Pedal Arm Using the Taguchi Method)

  • 이부윤;이현우
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.76-83
    • /
    • 2007
  • The Taguchi method is applied to obtain the optimal design of an automotive pedal arm in consideration of the stiffness test specification. Design parameters are defined to describe shape of the pedal arm. Volume, maximum Von-Mises stress and maximum displacement of the pedal arm are established as the smaller-the-better characteristics. Optimal parameters are determined on the basis of the analyzed level averages of the characteristics.

시험 규격을 고려한 자동차 페달 암의 구조해석과 위상최적화 (Structural Analysis and Topology Optimization of an Automotive Pedal Arm Considering Qualification Test Specifications)

  • 이부윤;이현우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.562-571
    • /
    • 2006
  • Finite element analysis is performed to evaluate structural reliability of an automotive pedal arm under conditions of the stiffness, the load and the endurance test specifications. Results of the analysis shows that the pedal arm is safe enough under the tests. A topology optimization is numerically implemented, overall shape of the pedal arm being verified to be reasonable, A design concept to insert holes in the arm is established, which may be used to reduce its weight.

자동차 클러치 페달 암의 무게 최소화를 위한 형상 최적설계 (Shape Optimal Design to Minimize the Weight of the Pedal Arm of an Automotive Clutch)

  • 이부윤;이현우
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.269-276
    • /
    • 2007
  • Optimal thickness and shape of the pedal arm of an automotive clutch is determined, using the numerical optimization technique, by solving the size and shape optimization problems to minimize its weight. For the optimization problems, two cases of stress and displacement constraints are considered: one from the vertical, and the other from the transverse stiffness test condition. The result of the transverse case is shown to be more conservative than that from the vertical case, being determined as the final optimum.