• Title/Summary/Keyword: Automotive lift

Search Result 134, Processing Time 0.026 seconds

The Evaluation of Surface Crack in Paramagnetic Material by FEF Technique (FEF 탐상법을 이용한 상자성체 표면결함 평가)

  • Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.532-537
    • /
    • 2004
  • FEF(Focused Electromagnetic Field) technique was newly developed that is based on the induction principle exciting electromagnetic field. The technique consists of an induction wire and a sensor for detecting electromagnetic field, and is applied in a non-contact mode. In this study, the technique was applied to the evaluation of EDM slits in some conductive materials - aluminum alloy, stainless steel and Inconel alloy. The voltage in the non-defect region is depended upon the measurement lift-off. The voltage signals on defects are measured with peak values, and the peak values changed with the depth of defects. The voltage distributions for all conductive materials are the same trend.

Characteristics of Flow Over a Rotationally Oscillating Cylinder (주기적으로 회전하는 원형실린더 주위의 유동특성)

  • Choe, Hae-Cheon;Choe, Seong-Ho;Gang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.515-523
    • /
    • 2002
  • Effects of rotary oscillation on unsteady laminar flow past a circular cylinder have been investigated in this study. Numerical simulations are performed for the flow at Re=100 in the range of 0.2<$\Omega$<2.5 and 0.02<$St_f$<0.8, where $\Omega$ and $St_f$ are, respectively, the maximum rotation velocity and rotation frequency normalized by the free-stream velocity and cylinder diameter. Results show that rotary oscillation has significant effects on the flow. When the rotation frequency is near the natural vortex-shedding frequency, lock-on occurs and the lock-on frequency range becomes wider as the rotation velocity increases. In a certain range of the rotation frequency and velocity, modulations in the velocity, lift and drag signals occur and this modulation frequency is expressed as a linear combination of the rotation frequency and vortex-shedding frequency. The mean drag and amplitude of the lift fluctuations show local minima near the boundary between the lock-on non and lock-on regions.

Structural Design of CN fan Lift of 5 tonne Fans for Air Conditioner (5톤 송풍기용 FAN 인양기 구조설계)

  • Lee, Hyoungwook;Lee, Gwanghee
    • Journal of Institute of Convergence Technology
    • /
    • v.9 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • Normal cranes cannot be used to move the fan inside the high-rise factories. Due to the size of the fan and safety accidents, there is a need for a structure capable of lifting and transporting. In this study, the safety of the structure was evaluated by considering the center of gravity of the fan and the effect of the fan being tilted up. An analysis of the buckling was performed by hand calculation. Nonlinear analysis was performed using ABAQUS to evaluate the safety of the structure. The safety factor for buckling is above 4.0 and the safety factor for stress is calculated to be 1.31 under the worst load distribution conditions.

Worst Case Scenario Generation on Vehicle Dynamic Stability and Its Application (주행 안정성을 고려한 최악 상황 시나리오 도출 및 적용)

  • Jung, Dae-Yi;Jung, Do-Hyun;Moon, Ki-Hyun;Jeong, Chang-Hyun;Noh, Ki-Han;Choi, Hyung-Jeen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2008
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios mentioned above and its application in simulation basis. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of either roll angle or yaw rate. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition (ex.2-inch wheel lift). Additionally, as an application, the worst case steering maneuver is acquired for the vehicle to operate with a simple ESP system. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle system both with an intelligent safety control system and without it.

Application of Graphene Platelets on Electronic Controlled Thermostat of TGDI Engine for Improving Thermal Sensitivity (TGDI엔진용 전자식 수온조절기의 감온성능 향상을 위한 그래핀 소재의 적용)

  • Kim, SeoKyu;Kim, YongJeong;Joung, Heehwa;Jeon, Wonil;Jeong, Jinwoo;Jeong, SooJin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.66-73
    • /
    • 2017
  • In this work, graphene platelets were introduced into wax in an automotive electronic controlled thermostat for the purpose of enhancing its thermal-conductive property and improving response performance. Graphene content ranging from 10 % to 20% was added into and mixed with the wax to investigate the effect of graphene amounts on the performance of an automotive electronic controlled thermostat in terms of response time, hysteresis and melting temperature. The experimental results revealed that graphene in wax contributed to a reduction in the response time and hysteresis of an automotive electronic controlled thermostat. As a consequence, important improvement in thermal sensitivity, full lift, melting temperature and hysteresis were obtained. The thermal response of wax with graphene content of 20 % was improved by 25 %, as compared to that of wax with Cu content of 20 %. Hysteresis of wax with graphene was reduced by $0.6^{\circ}C$ as compared to that of wax with Cu content. The melting temperature of wax is lowered and hysteresis is also improved with increased graphene content of wax in an electronic controlled thermostat. We hope that this study can help further the transition of nano-fluid technology from small-scale research laboratories to industrial application in the automotive sector.

Feedforward EGR Control of a Passenger Car Diesel Engine Equipped with a DC Motor Type EGR Valve (DC 모터방식 EGR 밸브를 적용한 승용디젤엔진의 앞먹임 공기량 제어에 관한 연구)

  • Oh, Byoung-Gl;Lee, Min-Kwang;Park, Yeong-Seop;Lee, Kang-Yoon;SunWoo, Myoung-Ho;Nam, Ki-Hoon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.14-21
    • /
    • 2011
  • In diesel engines, accurate EGR control is important due to its effect on nitrogen oxide and particulate matter emissions. Conventional EGR control system comprises a PI feedback controller for tracking target air mass flow and a feedforward controller for fast response. Physically, the EGR flow is affected by EGR valve lift and thermodynamic properties of the EGR path, such as pressures and temperatures. However, the conventional feedforward control output is indirectly derived from engine operating conditions, such as engine rotational speed and fuel injection quantity. Accordingly, the conventional feedforward control action counteracts the feedback controller in certain operating conditions. In order to improve this disadvantage, in this study, we proposed feedforward EGR control algorithm based on a physical model of the EGR system. The proposed EGR control strategy was validated with a 3.0 liter common rail direct injection diesel engine equipped with a DC motor type EGR valve.

A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance (커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jeong, Soojin;Lee, Sangin;Kim, Taehun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.

Characteristics of In-cylinder Steady Flow using PIV for Different Intake Port Geometries in a 4-valve Gasoline Engine (PIV에 의한 4밸브 가솔린기관의 흡기포트 형상에 따른 정상유동 해석)

  • 조규백;전충환;장영준;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.188-196
    • /
    • 1997
  • Many researchers have developed the measurement technique of in-cylinder flow characteristics and found the effect of intake port geometries on engine performance. The flow characteristics of four-valve cylinder head were examined in a steady flow rig for different intake ports. Tumble intensity of intake configurations with different entry angles were quantified with a tumble meter. The velocity and angular momentum distributions in the tumble adaptor were measured under steady conditions with PIV(Particle Image Velocimetry). We have obtained the results that flow structure becomes complicated by valve interference at low valve lift. As the valve interferences were reducing and the flow pattern changed to large vortex structure with tumble direction, intake ports with different entry angles have different tumble centers. Tumble eccentricity of intake port with low entry angle was large, so that the port had relatively much angular momentum compared to others which was expected to improve combustion performance.

  • PDF

Simulation of High Pressure Common-rail Fuel Injection System (커먼레일 고압분사 시스템 수치 시뮬레이션)

  • 김홍열;구자예;나형규;김창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.162-173
    • /
    • 1998
  • The high pressure common rail injection system offers a high potential for improving emmisions and performance characteristics in large direct diesel engines. High pressures in the common rail with electronic control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine rpm and load conditions. In this study, high pressure supply pump, common rail, pipes, solenoid and control chamber, and nozzle were modeled in order to predict needle lift, rate of injection, and total injected fuel quantity. When the common rail pressure is raised up to 13.0 ㎫ and the targer injection duration is 1.0ms, the pressure drop in common rail is about 5.0㎫. The angle of effective pressurization is necessary to be optimized for the minimum pump drive torque and high pressure in common rail depending on the operating conditions. The characteristics of injection were also greatly influenced by the pressures in common rail, the areas of the inlet and exit orifice of the control chamber.

  • PDF

ROLLOVER INDEX-BASED ROLLOVER MITIGATION CONTROL SYSTEM

  • Yoon, J.;Yi, K.;Kim, D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.821-826
    • /
    • 2006
  • This paper describes a rollover index (RI)-based rollover mitigation control (RMC) system. A rollover index which indicates an impending rollover has been developed by a roll dynamics phase plane analysis. The rollover index is calculated using the roll angle, the roll rate, the lateral acceleration and time to wheel lift (TTWL). A differential braking control law based on a 2-D bicycle model has been designed using the direct yaw control (DYC) method. An RMC threshold has been determined from the rollover index. The performance of the RMC scheme and the effectiveness of the proposed rollover index are illustrated using a vehicle simulator.