• Title/Summary/Keyword: Automotive bumper

Search Result 88, Processing Time 0.024 seconds

A Study on The Curvature Extrusion for Al Bumper Beam (알루미늄 범퍼 빔 곡률압출공정에 관한 연구)

  • Lee, S.K.;Kim, B.M.;Oh, K.H.;Park, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.42-45
    • /
    • 2008
  • Recently, aluminum is widely used to reduce the vehicle weight. Aluminum curved extruded products are used for the design of automotive frame parts. This study focuses on the determination of process condition fur automotive bumper beam with various curvatures. In this study, a curvature prediction model has been proposed considering the geometric relationship and the characteristic of the curvature extrusion equipment. Using the proposed model and FE analysis, the appropriated process condition was determined to produce the bumper beam. Finally, curvature extrusion experiment was carried out to verify the effectiveness of the proposed curvature prediction model and the process condition.

  • PDF

Laser Beam Irradiation Strengthening for Weight Reduction of Automobile Bumper Beam (I) (자동차 범퍼빔 경량화를 위한 레이저 빔 조사 강화(I))

  • Suh, Jeong;Lee, Jae-Hoon;Oh, Sang-Jin;Lee, Moon-Yong;Lee, Gyu-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.228-234
    • /
    • 2002
  • The CO$_2$ laser beam irradiation strengthening of 35kgf/mm$_2$ grade steel sheet is investigated to reduce the weight of bumper beam. The increase of tensile strength is dominated by the number of fully penetrated melting lines. The optimal laser irradiation pattern is obtained by 3-point bending test of hat-type specimens. Laser should be irradiated not only on the center specimen densely in the width direction, but also on the edge densely in the longitudinal direction. Local laser strengthening may be effective for the weight reduction of automobile bumper beam.

Bumper Stay Design for RCAR Front Low Speed Impact Test (RCAR 전방 저속 충돌시험 대응 범퍼 스테이 설계)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.191-197
    • /
    • 2016
  • RCAR low speed impact test estimates repair cost of the impacted vehicle. In this study, for a mid-size vehicle front body model, structural performance for RCAR low speed impact were analyzed with changing the bumper stay shape and size. First, for improving the impact load transfer mechanism to side member the stay rear section shape at connecting area with side member was modified and the stay outer was redesigned to be normal to the barrier. Next, the investigation on stay thickness effect was carried out and the performances of several models with different forming shape were compared. The final design showed 13mm decrease in the maximum barrier intrusion distance and greatly reduced side member deformation. Additional analyses explained the validity of the final design.

The Development of Material Technology Applied to Bumper Beam (자동차 범퍼빔 적용 차세대 재료기술의 개발)

  • 이상제;박진수;구도회;정병훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.206-215
    • /
    • 2002
  • It is to be classified into friendly environment and safety problems, as a main technology development of the recent automotive industry. As these tendency, lots of automobile companies focus on a reduction of fuel expenses and strengthen of crash safety using high strength steel. In this study advanced technologies such as tailored blanks, aluminum extrusion and high strength steel forming applied to bumper beam will be described. As a result of impact analysis and an actual impact test, in terms of beam performance and a possibility fur the mass production will be discussed.

Study on the Convergent Life Evaluation due to the Bumper Configuration of Multipurpose Vehicle (다목적차량의 범퍼형상에 따른 융합적 수명평가에 관한 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.85-90
    • /
    • 2015
  • In this study, the life evaluation due to the structural configuration of bumper attached at the front side of ATV vehicle is studied on the basis of fatigue analysis. As the purpose of this study, the characteristic of bumper exposed on the repetitive loading condition like the vibration is understood. The position of crack happened at the fatigue situation is grasped in advance and complemented in advance. It is considered that the multipurpose vehicle is designed to not be driven on the paved general road but the rough road like the unpaved load. And the weak part of bumper is understood through the study of life evaluation on this driving environment. The durability can be improved by doing the safe design of automotive bumper on the basis of the analysis result. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Numerical Modeling for Cumulative Impact of Automotive Bumper (자동차 범퍼의 누적 충격 평가)

  • Kim, Heon-Young;Choi, Jong-Gil;Kim, Jung-Min;Lee, Kang-Wook;Yeo, Tae-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.29-34
    • /
    • 2007
  • Numerical analyses are carried out to evaluate the cumulative impact damage of an automotive front end bumper under the low speed crash events(CMVSS215) by using explicit code. Results of first impact simulation, which are deformed shape, thickness, stress tensors and strain tensors, are used as the initial conditions for a next impact simulation. Between the events, the residual vibration is damped out by using nodal damping, and then recovery after each event is evaluated by several methods, one of which is a springback analysis with implicite finite element analysis code. The coupled analysis scheme for the evaluation of cumulative impact damage is verified through the comparison with test results.

Design and Impact Analysis of Automotive Bumper Beam Using Aluminum Foam (알루미늄 폼을 사용한 자동차 범퍼 빔의 설계 및 충돌해석)

  • Bang, Seung-Ok;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1552-1558
    • /
    • 2011
  • In this paper, the automotive beam using aluminium foam is designed and the impact analysis is carried out. The analysis model is the beam of actual size with B- type section structure. At the frontal crash of low speed, ANSYS AUTODYN is used by predicting the behavior of deformation and its internal energy. By the use of 7075-T6 aluminum alloy, the weight is reduced as much as 55% than steel. The deformation at the bumper foam of aluminum is similar with that of steel and the impact energy reduction at aluminum is more than steel. The foam filled with aluminum as much as 50 % has more impact energy absorption than the completely filled aluminum foam.

Analysis techniques for plastic bumper design (플라스틱 범퍼 설계를 위한 해석기법)

  • 심재우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.13-18
    • /
    • 1991
  • 여기서는 자동차 분야중 Plastic이 가장 많이 적용되고 있는 Bumper의 초기 설계 가능성 확인(Feasibility study) 및 최적 설계를 위한 유동해석, 구조해석 그리고 Blow Molding Back-Beam 해석을 위한 PITA(Polymer Inflation and Thinning Analysis) 등의 기법들에 대한 내용 및 적용 방법 등에 대하여 서술하였다. 특히, Energy Absorbing 역할을 하는 Back-Beam은 Blow Molding에 의한 설계방법에 촛점을 맞추었다.

  • PDF