• 제목/요약/키워드: Automotive Structure

검색결과 968건 처리시간 0.024초

초음파 개질 경유의 연료특성과 연소특성의 상관관계에 관한 연구 (I) -화학구조와 발열량과의 상관성 (A Study on Relationship between Fuel Characteristics and Combustion Characteristics of Reformed Diesel Fuels by Ultrasonic Irradiation (I) - Relationship between Chemical Structure and Higher Heating Value)

  • 이병오;류정인
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.72-79
    • /
    • 2002
  • The main objective of this study is to investigate the relationship between chemical structure and higher heating value of reformed diesel fuels by ultrasonic irradiation. In order to analyze the chemical structure changes of the reformed diesel fuels by ultrasonic irradiation, Proton nuclear magnetic resonance spectrometer(1H-NMR) was used and to analyze the effect of higher heating values of these diesel fuels, the bomb calorimeter was used. From the study, following conclusive remarks can be made. 1) The aromatic carbon percentages and higher heating values of the reformed diesel fuels by ultrasonic irradiation increased more than the conventional diesel ones. 2) The aromatics percentages and Branch Index(BI) of the reformed diesel fuels by ultrasonic irradiation decreased more than the conventional diesel ones. 3) The higher heating values on both for conventional fuel and reformed diesel fuels by ultrasonic energy irradiation is directly proportional to aromatic carbon percentages and inversely proportional to aromatic percentages and BI for these fuels.

자동차 파워 트레인 샤프트 가공용 8축 복합가공기의 고 강성 구조설계에 관한 연구 (High-Stiffness Structure Design of 8-Axis Multi-tasking Machine for Automotive Powertrain Shafts)

  • 문동주;조준현;최윤서;황인환;이종찬
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.78-83
    • /
    • 2016
  • The development of an exclusive 8-axis multi-tasking machine to finish multiple cutting processes by a single piece of power equipment for securing the high-precision machining and high productivity of the series of shafts (a core part of the automotive powertrain that delivers engine power) is needed. The rigidity of the structure must be improved and the weight of the structure must be reduced to develop a multi-tasking machine with high precision and high productivity. In this paper, we perform a static structural analysis of the initial design of the multi-tasking machines and compare the results of the multi-tasking machines improved by the reinforced design and the results of the initial one. According to the results of the structural analysis, the rigidity of the reinforced machine was increased and the overall weight was decreased. Therefore, the productivity was increased.

차량 차체 설계 (Automotive Body Design)

  • 이정익;김병곤;정태진
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.10-22
    • /
    • 2008
  • In an automotive body structure, a design configuration that fulfills structural requirements such as deflection, stiffness and strength is necessary for structural design and is composed of various components. The integrated design is used to obtain a minimum weight structure with optimal or feasible performance based on conflicting constraints and boundaries. The mechanical design must begin with the definition of one or more concepts for structure and specification requirements in a given application environment. Structural optimization is then introduced as an integral part of the product design and used to yield a superior design to the conventional linear one. Although finite element analysis has been firmly established and extensively used in the past, geometric and material nonlinear analyses have also received considerable attention over the past decades. Also, nonlinear analysis may be useful in the area of structural designs where instability phenomena can include critical design criteria such as plastic strain and residual deformation. This proposed approach can be used for complicated structural analysis for an integrated design process with the nonlinear feasible local flexibilities between system and subsystems.

등가정하중을 이용한 차량 전면구조물 충돌최적설계 (Crash Optimization of an Automobile Frontal Structure Using Equivalent Static Loads)

  • 이영명;안진석;박경진
    • 한국자동차공학회논문집
    • /
    • 제23권6호
    • /
    • pp.583-590
    • /
    • 2015
  • Automobile crash optimization is nonlinear dynamic response structural optimization that uses highly nonlinear crash analysis in the time domain. The equivalent static loads (ESLs) method has been proposed to solve such problems. The ESLs are the static load sets generating the same displacement field as that of nonlinear dynamic analysis. Linear static response structural optimization is employed with the ESLs as multiple loading conditions. Nonlinear dynamic analysis and linear static structural optimization are repeated until the convergence criteria are satisfied. Nonlinear dynamic crash analysis for frontal analysis may not have boundary conditions, but boundary conditions are required in linear static response optimization. This study proposes a method to use the inertia relief method to overcome the mismatch. An optimization problem is formulated for the design of an automobile frontal structure and solved by the proposed method.

중형 상용차 통풍형 브레이크 디스크의 제동 시 열 유동 및 변형 해석 (Thermal Fluid Flow and Deformation Analysis of Medium Commercial Vehicle Ventilated Brake Disc in Braking)

  • 강채욱;최규재
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.63-69
    • /
    • 2014
  • Domestic automobile companies have adopted drum type brake system for commercial vehicles. However recently those companies have been applying disc-brake system to solve vehicle control-instability and inefficient heat discharge performance of conventional drum brake system for a medium commercial vehicle. Because the kinetic energy of a running commercial vehicle is relatively high, the brake system should discharge lots of heat energy while braking. A ventilated type brake disc has been used to increase heat discharge performance of a brake system. The vent structure of a disc highly affects cooling efficiency. This paper compares thermal characteristics of three types of vent structure in JASO C421 braking condition. It is found that the slant bend type disc has the lowest temperature and thermal stress distributions in the braking condition.

자동차용 Al-6Si-2Cu 합금의 용체화처리에 따른 미세조직 및 기계적 특성 변화 (Microstructure and Mechanical Properties on Solid Solution Heat Treatment of Al-6Si-2Cu Alloy for Lightweight Automotive)

  • 홍승표;김정석
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.538-542
    • /
    • 2014
  • Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for lightweight automotive parts were investigated. The test specimens were prepared by gravity casting process. Solution heat treatments were applied to as-cast alloys to improve mechanical properties. The microstructure of the gravity casting specimen presents a typical dendrite structure, having a secondary dendrite arm spacing (SDAS) of $37{\mu}m$. In addition to the Al matrix, a large amount of coarsened eutectic Si, $Al_2Cu$ intermetallic phase, and Fe-rich phases were identified. After solution heat treatment, single-step solution heat treatments were found to considerably improve the spheroidization of the eutectic Si phase. Two-step solution treatments gave rise to a much improved spheroidization. The mechanical properties of the two-step solution heat treated alloy have been shown to lead to higher values of properties such as tensile strength and microhardness. Consequentially, the microstructural and mechanical characteristics of Al alloy have been successfully characterized and are available for use with other basic data for the development of lightweight automotive parts.

A Case Study on the Influence Factors of Financial Performance of Korean Automotive Parts Cooperation Companies through Research Hypothesis

  • AN, Ho-Jin;KIM, Wan-Ki
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제6권3호
    • /
    • pp.327-337
    • /
    • 2019
  • The aim of this research is to contribute to enhancing the competitiveness of automotive parts suppliers while departing from the dependent relationship structure, by developing and interpreting factors that affect sale, which are financial achievements, in a practical way. The research data covered 200 companies from 2013-2017. The study hypothesis was verified by dividing the hypothesis into Model1 with control variables only and Model2 with control variables in independent variables. As a result of hypothesis testing, regarding sales, only capital size showed to have an effect in Model1, while in Model2, asset size, number of employees and joint ventures with foreign companies did but the other remaining factors did not. In particular, the results showed that an increase in financial performance required 'Economies of scale', and that companies that concentrated on a small number of items, diversified products into four or more items, or owned two to four suppliers, reaped positive results in financial performance. Therefore, in addition to the selection and concentration of corporate management for production items and account management, applying strategies, like the inter-company M&A, consortiums and co-branded strategies to achieve 'Economy of scale', would highly enhance the financial performance of automotive parts suppliers.

분자동력학 해석을 이용한 인덴테이션시 실리콘 내부의 결함구조에 관한 연구 (A molecular dynamics simulation on the defect structure in silicon under indentation)

  • 트란딘 롱;유용문;강우종;전성식
    • Composites Research
    • /
    • 제24권2호
    • /
    • pp.9-13
    • /
    • 2011
  • 본 논문에서는 zinc blende계열의 결정구조를 갖는 실리콘 내부의 결함을 분석할 수 있는 대칭축 파라메터 (Symmetric axis parameter)방법을 이용하여, 탄성 및 소성 변형을 구별하는 방법을 제시하였다. 분자 동력학 해석프로그램인 LAMMPS를 사용하여, 실리콘에 대한 나노인덴테이션 해석을 수행하였다. 구형 인덴터 아래에 발생한 실리콘내부의 결함은 ring crack에서의 threefold 무늬와 전위발생경로를 보여주였다. 또한, 해석결과는 기존의 이론이나, 실험결과와도 일치하는 것을 확인하였다.

VEHICLE ELECTRIC POWER SIMULATOR FOR OPTIMIZING THE ELECTRIC CHARGING SYSTEM

  • Lee, Wootaik;Sunwoo, MyoungHo
    • International Journal of Automotive Technology
    • /
    • 제2권4호
    • /
    • pp.157-164
    • /
    • 2001
  • The vehicle electric power system, which consists of two major components: a generator and a battery, which have to provide numerous electrical and electronic systems with enough electrical energy. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight is required when the capacities of the generator and the battery are to be determined for a vehicle. An easy-to-use and inexpensive simulation program may be needed to avoid the over/under design problem of the electric power system. A vehicle electric power simulator is developed in this study. The simulator can be utilized to determine the optimal capacities of generators and batteries. To improve the expandability and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC. Empirical electrical models of various generators and batteries, and the structure of the simulation program are presented. For executing the vehicle electric power simulator, data of engine speed profile and electric loads of a vehicle are required, and these data are obtained from real driving conditions. In order to improve the accuracy of the simulator, numerous driving data of a vehicle are logged and analyzed.

  • PDF

고장력 강판에서의 크랙 전파 및 성장특성에 대한 시뮬레이션 해석 (Simulation Analysis on the Property of Crack Propagation and Growth at High Tension Steel Plate)

  • 강병목;김정오;이제훈;조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.471-477
    • /
    • 2015
  • In this study, the property of crack propagation and growth at high tension steel plate existed with center crack is investigated. The behaviors of fracture mechanics due to existence or not of hole near the center crack in specimen and the length of crack length are investigated when the load is applied at the one side end of specimen. Stress, deformation and deformation of this specimen are evaluated through simulation analysis. By the analysis results at this study, stress intensity factors are obtained. The damage happened at machine or structure with crack or defect can be estimated on the basis of study results.