• Title/Summary/Keyword: Automotive Semiconductor

Search Result 114, Processing Time 0.023 seconds

Automotive High Side Switch Driver IC for Current Sensing Accuracy Improvement with Reverse Battery Protection

  • Park, Jaehyun;Park, Shihong
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • This paper presents a high-side switch driver IC capable of improving the current sensing accuracy and providing reverse battery protection. Power semiconductor switches used to replace relay switches are encumbered by two disadvantages: they are prone to current sensing errors and they require additional external protection circuits for reverse battery protection. The proposed IC integrates a gate driver and current sensing blocks, thus compensating for these two disadvantages with a single IC. A p-sub-based 90-V $0.13-{\mu}m$ bipolar-CMOS-DMOS (BCD) process is used for the design and fabrication of the proposed IC. The current sensing accuracy (error ${\leq}{\pm}5%$ in the range of 0.1 A-6.5 A) and the reverse battery protection features of the proposed IC were experimentally tested and verified.

InGaAs Nano-HEMT Devices for Millimeter-wave MMICs

  • Kim, Sung-Won;Kim, Dae-Hyun;Yeon, Seong-Jin;Seo, Kwang-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.162-168
    • /
    • 2006
  • To fabricate nanometer scale InGaAs HEMTs, we have successfully developed various novel nano-patterning techniques, including sidewall-gate process and e-beam resist flowing method. The sidewall-gate process was developed to lessen the final line length, by means of the sequential procedure of dielectric re-deposition and etch-back. The e-beam resist flowing was effective to obtain fine line length, simply by applying thermal excitation to the semiconductor so that the achievable final line could be reduced by the dimension of the laterally migrated e-beam resist profile. Applying these methods to the device fabrication, we were able to succeed in making 30nm $In_{0.7}Ga_{0.3}As$ HEMTs with excellent $f_T$ of 426GHz. Based on nanometer scale InGaAs HEMT technology, several high performance millimeter-wave integrated circuits have been successfully fabricated, including 77GHz MMIC chipsets for automotive radar application.

Improved Crash Detection Algorithm for Vehicle Crash Detection

  • An, Byoungman;Kim, YoungSeop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.93-99
    • /
    • 2020
  • A majority of car crash is affected by careless driving that causes extensive economic and social costs, as well as injuries and fatalities. Thus, the research of precise crash detection systems is very significant issues in automotive safety. A lot of crash detection algorithms have been developed, but the coverage of these algorithms has been limited to few scenarios. Road scenes and situations need to be considered in order to expand the scope of a collision detection system to include a variety of collision modes. The proposed algorithm effectively handles the x, y, and z axes of the sensor, while considering time and suggests a method suitable for various real worlds. To reduce nuisance and false crash detection events, the algorithm discriminated between driving mode and parking mode. The performance of the suggested algorithm was evaluated under various scenarios, and it successfully discriminated between driving and parking modes, and it adjusted crash detection events depending on the real scenario. The proposed algorithm is expected to efficiently manage the space and lifespan of the storage device by allowing the vehicle's black box system to store only necessary crash event's videos.

Study of the Geometry and Wettability of Nozzles for Precise Ejection of High Viscous Liquids (고점도 용액 정밀토출을 위한 노즐 직경 및 표면젖음성 특성 연구)

  • Lee, Sanghyun;Bae, Jae Hyeon;Lee, Sangmin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.123-128
    • /
    • 2021
  • Liquid dispensing systems are extensively used in various industries such as display, semiconductor, and battery manufacturing. Of the many types of dispensers, drop-on-demand piezoelectric jetting systems are widely used in semiconductor industries because of their ability to dispense minute volumes with high precision. However, due to the problems of nozzle clogging and undesirable dispensing behavior in these dispensers, which often result in device failure, the use of highly viscous fluids is limited. Accordingly, we studied the behaviors of droplet formation based on changes in viscosity. The effects of surface energy and the inner diameters of needle-type nozzles were also studied. Results showed that nozzles with lower surface energies reduced the ejection volume of droplets when a smaller nozzle diameter (0.21 mm in this study) was applied. These results indicate that the hydrophobic treatment of nozzle surfaces and the use of smaller nozzle diameters are critical factors enabling the use of highly viscous fluids in precision dispensing applications.

Development of Power Supply for High-voltage FET Test (고내압 FET 테스트 장비용 전원공급장치 개발)

  • Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6821-6829
    • /
    • 2014
  • The use of semiconductor devices as a component of eco-friendly motor vehicles has increased and their widespread use as high voltage switches is expected. On the other hand, in the case of high-voltage switches, reliability test equipment is not localized. To test high voltage switches, this paper analyzed the relevant test standards for developing power supplies. In particular, for the automotive semiconductor reliability test, the AEC (Automotive Electronic Council) Q101 was analyzed. Based on that, the standard specifications of the power supply were determined. For the main power circuit, the pull bridge converter was adopted and based on the specification, the circuit parameters were determined and verified by simulation. The interface for the parallel and pattern operation was designed. The characteristics of the power supply were tested.

Electrical Characteristics of SiO2/4H-SiC Metal-oxide-semiconductor Capacitors with Low-temperature Atomic Layer Deposited SiO2

  • Jo, Yoo Jin;Moon, Jeong Hyun;Seok, Ogyun;Bahng, Wook;Park, Tae Joo;Ha, Min-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.265-270
    • /
    • 2017
  • 4H-SiC has attracted attention for high-power and high-temperature metal-oxide-semiconductor field-effect transistors (MOSFETs) for industrial and automotive applications. The gate oxide in the 4H-SiC MOS system is important for switching operations. Above $1000^{\circ}C$, thermal oxidation initiates $SiO_2$ layer formation on SiC; this is one advantage of 4H-SiC compared with other wide band-gap materials. However, if post-deposition annealing is not applied, thermally grown $SiO_2$ on 4H-SiC is limited by high oxide charges due to carbon clusters at the $SiC/SiO_2$ interface and near-interface states in $SiO_2$; this can be resolved via low-temperature deposition. In this study, low-temperature $SiO_2$ deposition on a Si substrate was optimized for $SiO_2/4H-SiC$ MOS capacitor fabrication; oxide formation proceeded without the need for post-deposition annealing. The $SiO_2/4H-SiC$ MOS capacitor samples demonstrated stable capacitance-voltage (C-V) characteristics, low voltage hysteresis, and a high breakdown field. Optimization of the treatment process is expected to further decrease the effective oxide charge density.

Vibration Analysis on the Inspection Equipment Frame of a Semiconductor Test Handler Picker (반도체 테스트 핸들러 픽커 검사장비 프레임에 대한 진동해석)

  • Kim, Young-Choon;Kim, Young-Jin;Kook, Jeong-Han;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4815-4820
    • /
    • 2014
  • As semiconductor chips are on a small scale, large content and high integratation, it is essential to develop the device of pick and place at the system of the semiconductor test handler to ensure its high precision and durability. In this study, inspection equipment frame model of a semiconductor test handler picker was investigated by vibration analysis with the property of the natural frequency and harmonic response. As 3 kinds of analysis case models, the device of pick and place was located at the left side (Case 1), the center (Case 2) and the right side (Case 3) of the upper guideline. The range of natural frequencies until the 6th order on this frame model ranges from 80Hz to 500Hz. As the analysis of the harmonic response when the frame is resonant, Case 2 showed the maximum equivalent stress of 52.802 MPa more than Cases 1 or 3. Case 2 was the most intensive among the three cases. Using the analysis result of this study, the design of the frame model, which can be applied to the safe working environment of the system is believed to be possible.

Development of Auto Positioning Laser System by using Image Measurement Data (영상 측정 데이터를 이용한 위치보정 레이저 가공시스템 개발)

  • Pyo, Chang-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.36-40
    • /
    • 2013
  • Recently, electronic equipments become smaller, more functional, and more complex than before. As these trends, MLC(multi-layer ceramic) circuit has been emerged to a promising technology in semiconductor inspection industry. Especially, multi-layer ceramic which is consisted of many fine-pitch multi-hole is used to produce a semiconductor inspection unit. The hole is processed by UV laser. But, working conditions are changed all the time. Therefore real time measurement of fine-pitch multi-hole is very important method for ensuring performance. In this paper we found the best method for illuminating and auto focusing. And, we verified our equipment.

Numerical Study on the Air-Cushion Glass Transportation Unit for LCD Panels

  • Im Ik-Tae;Jeon Hyun-Joo;Kim Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.27-31
    • /
    • 2006
  • Non-contact transportation system using air cushion for the manufacturing of large-sized LCD panels was considered. Flow characteristics between air pad and glass plate was analyzed using computational fluid dynamics method to obtain optimized air pad configurations. Effects of the design variables such as hole arrays from which gas is injected, gas-feeding method into the gas supplying channels, and horizontal and vertical pitches of clusters of holes were studied. Optimized air pad unit gave evenly distributed pressure contour on the glass surface and well-suspended levitation height in the experiment.

  • PDF

Three Dimensional Direct Monte Carlo Simulation on OLED Evaporation Process (유기EL 증착 공정에 대한 3차원 Monte Carlo 해석)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.37-42
    • /
    • 2009
  • The performance of an OLED(organic luminescent emitting device) fabrication system strongly depends on the design of the evaporation cell-source. Trends in display sizes have hauled the enlargement of mother glass substrates. The enlargement of substrates requires the improvement and the enlargement of the effusion cell-source for OLED evaporation process. The deposited layers should be as uniform as possible, and therefore it is important to know the effusion profile of the molecules emitted from the cell-source. Conventional 2D DSMC algorithm cannot be used for simulating the new concept cell-source design, such as a linear source. This work concerns the development of 3D DSMC (direct simulation Monte Carlo) analysis for simulating the behavior of the evaporation cell-sources. In this paper, the 3D DSMC algorithm was developed and the film thickness profiles were obtained by the numerical analysis.

  • PDF