• Title/Summary/Keyword: Automotive Semiconductor

Search Result 111, Processing Time 0.027 seconds

Analysis on Characteristics of Drawing Plastic Deformation for Rectangular Monel Material with Special Alloy and Rollers (특수합금 사각봉 모넬 소재의 인발 소성변형 및 롤러 특성 해석)

  • Lee, Young-Sik;Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.961-968
    • /
    • 2022
  • Hydrogen embrittlement leads to the damages in bolts, nut, especially, high pressure valves, in the semiconductor facilities, hydrogen vehicles, hydrogen stations and so on. Monel material has higher strength than SUS material. Therefore, even though Monel material with special alloy is usually used to prevent the hydrogen embrittlement, it needs powerful drawing system to manufacture the rectangular or hexagonal bar using circular bar. The purpose of this study is to investigate the characteristics of plastic deformation of Monel material and 2 rollers of rolling unit in plastic limit through numerical analysis. As the results, it was predicted that, based on mean stress, as the rolling step was increased, the rolling force of rolling unit was decreased. In addition, the heat treatment for Monel material was needed because of residual stress due to plastic deformation. As for rollers, the roller was safe about 1.86 times compared with that of ultimate strength. In this study, as the roller 2 showed larger stress than roller 1, thus, roller 2 should be designed carefully to guarantee the safety. Further it was confirmed that the reaction force of roller could be helpful in bearing design.

Korean Multinational Corporations' Global Expansion Strategies in Manufacturing Sector: Mother Factory Approach

  • Yong Ho Shin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.269-279
    • /
    • 2024
  • The study explores the evolving landscape of overseas expansion strategies by Korean corporations, focusing on recent geopolitical tensions, the COVID-19 pandemic, and disruptions in global supply chains. It emphasizes the challenges faced by industries producing high-value products and delves into the concept of "Friend-Shoring" policies in the United States, leading major Korean companies to invest in local semiconductor, battery, and automotive factories. Recognizing the potential fragmentation of Korea's manufacturing sector, the paper introduces the "Mother Factory" strategy as a policy initiative, inspired by Japan's model, to establish core production facilities domestically. The discussion unfolds by examining the cases of major companies in Japan and the United States, highlighting the need for Korea to adopt a mother factory strategy to mitigate risks associated with friend-shoring policies. Inspired by Intel's "Copy Exactly" approach, the paper proposes a Korean mother factory model integrating smart factory technology and digital twin systems. This strategic shift aims to enhance responsiveness to geopolitical challenges and fortify the competitiveness of Korean high-tech industries. Finally, the paper proposes a Korean Mother Factory based on smart factory concepts. The suggested model integrates smart factory technology and digital twin frameworks to enhance responsiveness and fortify competitiveness. In conclusion, the paper advocates for the adoption of a comprehensive Korean Mother Factory model to address contemporary challenges, foster advanced manufacturing, and ensure the sustainability and competitiveness of Korean high-tech industries in the global landscape. The proposed strategy aligns with the evolving dynamics of the manufacturing sector and emphasizes technological advancements, collaboration, and strategic realignment.

Investigation of Natural Convective Heat Flow Characteristics of Heat Sink (히트싱크의 자연대류 열유동 특성 분석)

  • Jung, Tae Sung;Kang, Hwan Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • To ensure proper functioning of electrical and mechanical systems, cooling devices are of great importance. A heat sink is the most common cooling device used in many industries such as the semiconductor, electronic instrument, LED lighting, and automotive industries. To design an optimal heat sink, the required surface area for heat radiation should be calculated based on an accurate expectation of the heat flow rate in the target environment. In this study, the convective heat flow characteristics were numerically investigated for a vertically installed typical heat sink and a horizontally installed one in free convection using ANSYS CFX. Comparative experiments were carried out to reveal the quantitative effect of the installation direction on the cooling performance. Moreover, the result was analyzed using the dimensionless correlation with the Nusselt number and Rayleigh number and compared with well-known theories. Finally, it was observed that the cooling performance of the vertically installed heat sink is approximately 10~15% better than that of the one in natural convection.

Design of 77 GHz Radar Transmitter Using 13 GHz CMOS Frequency Synthesizer and Multiplier (13 GHz CMOS 주파수 합성기와 체배기를 이용한 77 GHz 레이더 송신기 설계)

  • Song, Ui-Jong;Kang, Hyun-Sang;Choi, Kyu-Jin;Cui, Chenglin;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1297-1306
    • /
    • 2012
  • This work presents a 77 GHz radar transmitter for the automotive radar system. An integrated 13 GHz frequency synthesizer fabricated using 130 nm RF CMOS process drives a commercial W-band compound semiconductor monolithic multifunction amplifier(MPA), which includes a frequency multiplier by six to generate 77 GHz transmitting signal. The 13 GHz frequency synthesizer includes a high efficiency injection buffer of 4 dBm output power to drive the MPA. The output power of 77 GHz radar transmitter is higher than 13.99 dBm and the magnitude of the reference spur relative to the carrier is -36.45 dBc. The phase noise is -81 dBc/Hz at 1 MHz offset frequency from the carrier.

A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola (전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰)

  • Choi, Chulyoung;Choi, Woongchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.

Temperature control of the Rework-system using fuzzy PID controller (퍼지 PID 제어기에 의한 리워크 시스템의 온도제어)

  • Oh, Kabsuk;Kang, Geuntaek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6289-6295
    • /
    • 2014
  • Rework systems are the equipment used to install or remove semiconductor chips with BGA or SMD forms in printed circuit boards. The rework systems have hot air outlets. At the outlets, precise temperature control is needed to avoid heat shock. The aim of this paper was to suggest a new controller for temperature control at the hot air outlets. The suggested controller was a fuzzy PID controller. The fuzzy PID controllers were composed of TSK fuzzy rules and had outstanding ability for nonlinear systems control. This paper reports the design algorithm of fuzzy PID controllers, and the design process of the fuzzy PID controller for the temperature control of the outlets. Temperature control experiments were performed to verify the ability of the suggested controller. As a result, the RMS of the proposed method is 9.44 and the general method is 15.88. The experiments showed that the temperatures at the outlet using the suggested fuzzy PID controller followed the desired ones better than the commonly used PID controller.

Optimization of Thermal Deformation in Probe Card (프로브 카드의 열변형 최적화)

  • Chang, Yong-Hoon;Yin, Jeong-Je;Suh, Yong-S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4121-4128
    • /
    • 2010
  • A probe card is used in testing semiconductor wafers. It must maintain a precise location tolerance for a fine pitch due to highly densified chips. However, high heat transferred from its lower chuck causes thermal deformations of the probe card. Vertical deformation due to the heat will bring contact problems to the pins in the probe card, while horizontal deformation will cause positional inaccuracies. Therefore, probe cards must be designed with proper materials and structures so that the thermal deformations are within allowable tolerances. In this paper, heat transfer analyses under realistic loading conditions are simulated using ANSYS$^{TM}$ finite element analysis program. Thermal deformations are calculated based on steady-state temperature gradients, and an optimal structure of the probe card is proposed by adjusting a set of relevant design parameters so that the deformations are minimized.

An Exploratory Study on the Effect of Product Architecture on Catch-up Performance: The Development Case of Numerical Controllers in Korea (제품 아키텍처가 추격 성과에 미치는 영향에 대한 탐색연구: 우리나라의 공작기계 수치제어장치 개발 사례를 중심으로)

  • Kwak, Kiho;Kim, Wonjoon
    • Journal of Technology Innovation
    • /
    • v.24 no.2
    • /
    • pp.21-56
    • /
    • 2016
  • Despite many previous studies on catch-up, understanding on the effect of product architecture developed by latecomers on the catch-up performance remains limited. On the other hands, in contrast to the semiconductor, ship building, and automotive industry, even if Korean industry and government have invested the development of numerical controllers for machine tools in the past four decades, the industry and government have failed to achieve catch-up. Therefore, we newly examine the effect of product architecture on the catch-up performance of the Korea by implementing comparative research with periods on the evolution of product architecture of Fanuc's numerical controllers, which have achieved the largest market share in the world. We found that Fanuc developed open modular architecture based numerical controllers and provided product with customization of user requirements as well as cost effectiveness. Consequently, Fanuc has sustained market leader position since the mid-1980s. However, despite all the efforts of the industry and government, we found that the Korea failed to develop open modular architecture based numerical controllers and could not achieve significant catch-up performance. Our findings provide important theoretical backgrounds for examining the catch-up performance as well as investigating the reason why latecomers failed to achieve market catch-up even if they accomplished technological catch-up.

Flexible Planar Heater Comprising Ag Thin Film on Polyurethane Substrate (폴리우레탄 유연 기판을 이용한 Ag 박막형 유연 면상발열체 연구)

  • Seongyeol Lee;Dooho Choi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2024
  • The heating element utilizing the Joule heating generated when current flows through a conductor is widely researched and developed for various industrial applications such as moisture removal in automotive windshield, high-speed train windows, and solar panels. Recently, research utilizing heating elements with various nanostructures has been actively conducted to develop flexible heating elements capable of maintaining stable heating even under mechanical deformation conditions. In this study, flexible polyurethane possessing excellent flexibility was selected as the substrate, and silver (Ag) thin films with low electrical resistivity (1.6 μΩ-cm) were fabricated as the heating layer using magnetron sputtering. The 2D heating structure of the Ag thin films demonstrated excellent heating reproducibility, reaching 95% of the target temperature within 20 seconds. Furthermore, excellent heating characteristics were maintained even under mechanically deforming environments, exhibiting outstanding flexibility with less than a 3% increase in electrical resistance observed in repetitive bending tests (10,000 cycles, based on a curvature radius of 5 mm). This demonstrates that polyurethane/Ag planar heating structure bears promising potential as a flexible/wearable heating element for curved-shaped appliances and objects subjected to diverse stresses such as human body parts.

Development of Korean Green Business/IT Strategies Based on Priority Analysis (한국의 그린 비즈니스/IT 실태분석을 통한 추진전략 우선순위 도출에 관한 연구)

  • Kim, Jae-Kyeong;Choi, Ju-Choel;Choi, Il-Young
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.191-204
    • /
    • 2010
  • Recently, the CO2 emission and energy consumption have become critical global issues to decide the future of nations. Especially, the spread of IT products and the increased use of internet and web applications result in the energy consumption and CO2 emission of IT industry though information technologies drive global economic growth. EU, the United States, Japan and other developed countries are using IT related environmental regulations such as WEEE(Waste Electrical and Electronic Equipment), RoHS(Restriction of the use of Certain Hazardous Substance), REACH(Registration, Evaluation, Authorization and Restriction of CHemicals) and EuP(Energy using Product), and have established systematic green business/IT strategies to enhance the competitiveness of IT industry. For example, the Japan government proposed the "Green IT initiative" for being compatible with economic growth and environmental protection. Not only energy saving technologies but energy saving systems have been developed for accomplishing sustainable development. Korea's CO2 emission and energy consumption continuously have grown at comparatively high rates. They are related to its industrial structure depending on high energy-consuming industries such as iron and steel Industry, automotive industry, shipbuilding industry, semiconductor industry, and so on. In particular, export proportion of IT manufacturing is quite high in Korea. For example, the global market share of the semiconductor such as DRAM was about 80% in 2008. Accordingly, Korea needs to establish a systematic strategy to respond to the global environmental regulations and to maintain competitiveness in the IT industry. However, green competitiveness of Korea ranked 11th among 15 major countries and R&D budget for green technology is not large enough to develop energy-saving technologies for infrastructure and value chain of low-carbon society though that grows at high rates. Moreover, there are no concrete action plans in Korea. This research aims to deduce the priorities of the Korean green business/IT strategies to use multi attribute weighted average method. We selected a panel of 19 experts who work at the green business related firms such as HP, IBM, Fujitsu and so on, and selected six assessment indices such as the urgency of the technology development, the technology gap between Korea and the developed countries, the effect of import substitution, the spillover effect of technology, the market growth, and the export potential of the package or stand-alone products by existing literature review. We submitted questionnaires at approximately weekly intervals to them for priorities of the green business/IT strategies. The strategies broadly classify as follows. The first strategy which consists of the green business/IT policy and standardization, process and performance management and IT industry and legislative alignment relates to government's role in the green economy. The second strategy relates to IT to support environment sustainability such as the travel and ways of working management, printer output and recycling, intelligent building, printer rationalization and collaboration and connectivity. The last strategy relates to green IT systems, services and usage such as the data center consolidation and energy management, hardware recycle decommission, server and storage virtualization, device power management, and service supplier management. All the questionnaires were assessed via a five-point Likert scale ranging from "very little" to "very large." Our findings show that the IT to support environment sustainability is prior to the other strategies. In detail, the green business /IT policy and standardization is the most important in the government's role. The strategies of intelligent building and the travel and ways of working management are prior to the others for supporting environment sustainability. Finally, the strategies for the data center consolidation and energy management and server and storage virtualization have the huge influence for green IT systems, services and usage This research results the following implications. The amount of energy consumption and CO2 emissions of IT equipment including electrical business equipment will need to be clearly indicated in order to manage the effect of green business/IT strategy. And it is necessary to develop tools that measure the performance of green business/IT by each step. Additionally, intelligent building could grow up in energy-saving, growth of low carbon and related industries together. It is necessary to expand the affect of virtualization though adjusting and controlling the relationship between the management teams.