• Title/Summary/Keyword: Automotive Seat Frame

Search Result 44, Processing Time 0.018 seconds

Evaluation of Fatigue Behavior for Laser Welded High Strength Steel Sheets (SPFC590) (고장력 강판(SPFC590)의 레이저 용접부 피로거동 평가)

  • Heo, Cheol;Kwon, Jong-Wan;Cho, Hyun-Deog;Choi, Sung-Jong;Chung, Woo-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.53-64
    • /
    • 2012
  • Deep and narrow welds can be produced by laser welding at high welding speeds with a narrow heat-affected zone (HAZ) and little distortion of the workpiece. This study aims to evaluate the usefulness of laser welding at automobile component manufacture. Microstructure observation, hardness test, tensile test and fatigue life test are performed by using the fiber laser welded SPFC590 steel sheets which is used widely in the manufacture of automotive seat frame. Three kinds of specimens are only a SPFC590 steel plate, quasi-butt joint plate and lap joint plate by laser welding. The following results that will be helpful to understand the static strength, fatigue crack initiation and growth mechanism were obtained. (1) The tensile strength of quasi butt joint specimens nearly equal to base metal specimens, but lap joint specimens fractured in shear area of weld metal. (2) The fatigue strength of quasi-butt joint specimen was approximately 8 percent lower than that of the base metal specimens. Furthermore, the lap joint specimens were less than 86 percent of the base metal specimens. (3) The lap joint fatigue specimens fractured at shear area in high level stress amplitude, while fractured at normal area in low level stress amplitude. From these results, the applicability of the laser welding to the automobile component is discussed.

Development of a Finite Element Model for Crashworthiness Analysis of a Small-Sized Bus (소형버스 정면 충돌 특성 해석을 위한 유한요소 모델의 개발)

  • 김학덕;송주현;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.153-161
    • /
    • 2002
  • This paper develops a finite element model for crashworthiness analysis ova small-sized bus. The full vehicle finite element model is composed of 31,982 shell elements,599 beam elements,42 bar elements, and 34,204 nodes. The model uses four material models (such as elastic, elastic-plastic(steel), rigid. and elastic-plastic (rubber) material model) of PAM-CRASH. The model uses four contact types to define sliding interfaces in ten areas. A frontal crash test using an actual vehicle with 30mph velocity to a rigid barrier is carried out. Vehicle pulses at lower part of left and right b-pillar are measured, and deformed shapes of frame and driver seat's lower left area are photographed. A frontal crash simulation using the developed full vehicle finite element model is performed with PAM-CRASH installed in super computer SP2. The simulation is performed with the same conditions as the test. The measured vehicle pulses and photographed deformed shapes from the test are compared to ones from the simulation to validate the reliability of the developed model.

Study of Examples for Air Bag Non-deployment Including Rear Collision and Failure Phenomenon by Damage of Control Parts in Vehicle Air Bag (자동차 에어백의 제어부품 불량에 의한 고장현상 및 후방 추돌에 관련된 에어백 미전개에 대한 사례 연구)

  • Lee, Il Kwon;Kim, Young Gyu;Moon, Hak Hook
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.102-106
    • /
    • 2012
  • The purpose of this paper is to study the failure cases in relation to system of Air Bag in vehicle happened in the field. In the first example, it was separated the soldering parts connected the wire pin between air bag module and clock spring of air bag. Whenever the pin shake by the car's vibration, the driver verified the malfunction phenomenon appeared air bag warning lamp on instrument panel in front of driver's seat. in car inside room. The second example, it verified the warning lamp lighting phenomenon of air bag by produced the circuit plate non-contacting of single an element in air bag electronic control unit. The third example, it verified the light of air bag warning indicator lamp by separated with soldering parts connecting inner pin and resistance terminal of seat belt pretensioner using passenger seat. The fourth example, when the passenger car crash a back of truck, the former bumper get jammed under the latter as the roof height of car low less than that. Therefore, the impact of Car's collision verified that don't transfer with body frame of vehicle because of no attachment impact sensor in it.

A study on the weldability of 1500MPa grade hot stamping steels in the GMAW (1500MPa급 Hot stamping 강재의 GMAW 용접성에 관한 연구)

  • Hwang, J.;Kim, J.S.;Kim, C.H.;Lee, B.Y.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.64-64
    • /
    • 2009
  • The use of ultra high strength steels (UTSS) is a natural result with increasing the demands for the lightweight materials and developing an innovative steel technology. Recently it has been used a 1500MPa grade hot stamping steel as automobile bodies, reinforcement parts, and seat frame parts in the automotive industry. It is a quenchenable steel manufactured by hot stamping process. It is well known that UTSS welding has softening in the heat affected zone(HAZ). Because welding is a sort of process applying heat, it should change the heat treated features and degrade the strength. This study was performed to investigate the influence of the heat input on the softening of the HAZ in the GMAW process. Each experiment was compared with that in the conditions having a different current and voltage at a same heat input. In order to analysis characteristics of the HAZ, optical microscope was used to observe microstructure and vickers hardness tests were carried out across the welds. Applying low heat input means a fast cooling rate. It leads to high hardness in the HAZ. It is found that characteristics of the HAZ are determined by microstructure obtained by different cooling rate.

  • PDF