• 제목/요약/키워드: Automotive Outer Panel

검색결과 22건 처리시간 0.019초

자동차 외판 특징선 곡면의 단면 형상 측정과 분석 (Measurement and Analysis of the Section Profile for Feature Line Surface on an Automotive Outer Panel)

  • 최원창;정연찬
    • 소성∙가공
    • /
    • 제24권2호
    • /
    • pp.107-114
    • /
    • 2015
  • The current study presents a geometric measurement and analysis of the section profile for a feature line surface on an automotive outer panel. A feature line surface is the geometry which is a visually noticeable creased line on a smooth panel. In the current study the section profile of a feature line surface is analyzed geometrically. The section profile on the real press panel was measured using a coordinate measuring machine. The section profiles from the CAD model and the real panel are aligned using the same coordinate system defined by two holes near the feature line. In the aligned section profiles the chord length and height of the curved part were measured and analyzed. The results show that the feature line surface on the real panel is doubled in width size.

측정 데이터 이용한 자동차 외판 미세굴곡 추적 사례 연구 (Measured Data based Inspection for Unintended Deflections in Automotive Outer Panels)

  • 정연찬;이상헌;장대순;박상철
    • 한국CDE학회논문집
    • /
    • 제18권2호
    • /
    • pp.113-119
    • /
    • 2013
  • This paper proposes an approach to detect unintended deflections in an automotive outer panel. Conventionally, the detection of unintended deflections has been performed by experienced works, and it requires much amount of time and efforts. The motivation of this work is to reduce such efforts by providing an automated detection methodology. For the detection of unintended deflections, we make use of the measured data from an optical scanner which can be considered as a Z-map data. The proposed approach consists of four major steps; 1) measured data acquisition for an automotive outer panel, 2) identification of shape features, 3) removal of shape features, and 4) detection of unintended deflections via curvature analysis.

진공점진성형에서 복합공구경로가 차량용 외판부 도어패널의 변형특성에 미치는 영향 분석 (Deformation Characteristics of an Automotive Outer Door Panel by Vacuum-assisted Incremental Sheet Forming using Multi-tool paths)

  • 윤형원;박남수
    • 소성∙가공
    • /
    • 제32권4호
    • /
    • pp.208-214
    • /
    • 2023
  • This paper discusses the deformation characteristics of a scaled-down automotive outer door panel with vacuum-assisted incremental sheet forming. The vacuum condition between the die and Al6052-H32 sheet with a thickness of 1.0 mm is reviewed with the goal of improving the geometrical accuracy of the target product. The material flow according to the forming tool path, including the multi-tool path and conventional contour tool path, is investigated considering the degradation of the pillow effect. To reduce friction between the tool and the sheet during incremental forming, automotive engine oil (5W-30) is used as a lubricant, and the strain field on the surface of the formed product is analyzed using ARGUS. By comparing the geometry and material flow characteristics of products under different test conditions, it is confirmed that the product surface quality can be significantly improved when the vacuum condition is employed in conjunction with a multi-tool path strategy.

자동차 PANEL 성형 CAE 적용 사례 연구 및 금형제작 PROCESS의 개선 (A STUDY ON CAE APPLICATION FOR FORMING(STAMPING) OF AUTOMOTIVE PANEL AND IMPROVEMENT OF DIE MANUFATURING PROCESS)

  • 박용국;김재훈;곽태수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 제2회 박판성형심포지엄 논문집 박판성형기술의 현재와 미래
    • /
    • pp.33-40
    • /
    • 1998
  • In recent domestic automotive industry, applications of computer simulation to the manufacturing of stamping dies for inner and outer body panels which greatly affect durability and aesthetic quality of automobiles, have been increased. Enhancement of die quality, and reduction of total die manufacturing time and consequently manufacturing cost are the visible outcome. However, to successfully apply the result of simulation by a commercial package to the die manufacturing, development of an optimal die manufacturing process is required upon the completion of analysis of forte and shortcomings of available sheet metal forming softwares in the market. Based on the results of numerical analysis of front door outer panel forming, this paper evaluates the applicability of simulation results to the real die making for automotive body panels. Also, it attempts to select an optimal die manufacturing process including design, machining and tryout. Lastly, it discusses the expected effects by adopting the selected process in a real stamping die manufacturing facility.

유연 판넬의 스캐닝 고정구 제작 (Fabrication of Scanning Fixture for Flexible Panels)

  • 인정제
    • 한국산학기술학회논문지
    • /
    • 제11권11호
    • /
    • pp.4080-4086
    • /
    • 2010
  • 본 연구에서는 대형 차체 판넬과 같은 유연성이 큰 판넬의 3차원 형상을 스캐닝 하기 위한 고정구를 개발하였다. 유연 판넬에 대한 N-2-1 설계원리에 따라 자중의 영향이 최소화되는 지지점들을 유한요소 해석을 통하여 선정함으로써 hood outer 판넬의 고정구를 설계하고, Alufix 시스템을 이용하여 스캐닝 고정구를 제작하였다. 제작된 고정구를 이용하여 레이저 스캐닝을 수행하여 성공적으로 스프링 백을 측정함으로써, 본 연구에서 제안된 고정구 제작 방안의 유용성을 확인하였다.

차체 외판 부품의 내덴트성 향상을 위한 고강도 강판의 성형에 관한 연구 (Forming of Automotive Outer Body Panel using High Strength Steel Sheet for Improving Dent Resistance)

  • 김태정;김익수;정연일;윤치상;임종대
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.322-325
    • /
    • 2007
  • Dent resistance is an important characteristic to avoid damage on automotive outer panels. From a practical point of view, dents can be caused in a number of ways. Considering doors as an example, denting can occur from stone impacts or from the careless opening of an adjacently parked vehicle door. Denting can occur where the door surface is smooth and may not have sufficient curvature to resist dent. These exterior body parts are designed to improve dent resistance using a combination of work hardening and bake hardening. In brief, dent is affected by the shape of the parts and the material properties such as yield strength, strain and thickness. In this work, forming of door outer panel is investigated by Taguchi method. Main parameters are yield strength, thickness, blank size, blank holding force and so on. For the given value of design parameters, forming analysis of the thirty six cases are carried out according to L18 orthogonal array. After comparing the performance by simple conversion of simulation results into dent resistance, the final suggestion of the forming parameters is verified for the best improvement of dent resistance.

  • PDF

부분모델 합성법을 이용한 자동차 외판의 헤밍 공정에 대한 3차원 유한요소해석 (3-Dimensional Finite Element Analysis of Hemming for Automotive Outer Panels by Part Model Assembling Method)

  • 김헌영;임희택;김형종;이우홍;박춘달
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.115-121
    • /
    • 2004
  • Hemming is the last farming process in stamping and determines external quality of automotive outer panels. Few numerical approaches using 3-dimensional finite element model have been applied to a hemming process due to small element size which is needed to express the bending behavior of the sheet around small die comer and comparatively big model size of automotive opening parts, such as side door, back door and trunk lid etc In this study, part model assembling method is suggested and applied to the 3-dimensional finite element simulation of flanging and hemming process far an automotive front hood.

자동차 외판용 BH강판에서 성형성과 소부경화성에 미치는 조질압연의 영향 (Effect of Temper Rolling on Formability and Baking Hardenability in Baking Hardenable Steels for Auto Body Outer Panel)

  • 고흥석;문만빈;신철수;오현운
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.37-44
    • /
    • 2004
  • Automotive company has been endeavoring to develop high strength steels to get higher fuel efficiency of car since the oil shortage in 1970s and to cope with the recent strict environmental regulation. Outer panels(Hood, Roof, Door and Fender) for automobile require higher dent resistance. Bake-hardenable(BH) steels are known as useful for their high deep drawability and high dent resistance. Recently BH steels are increasingly adapted for outer panel use due to their high drawability and high dent resistance. In this study effect of temper rolling on formability (textures, r value) and bake hardenability is investigated fur improving characteristic of bake-hardenable steels.

  • PDF

차체 외판 부품의 덴트 특성 향상을 위한 알루미늄 판재의 성형조건에 관한 연구 (Forming Condition for Automotive Body Outer Panel using Aluminum Alloy Sheet for Improved Dent Resistance)

  • 고세진;김태정;김익수
    • 소성∙가공
    • /
    • 제20권6호
    • /
    • pp.420-426
    • /
    • 2011
  • Dent resistance is determined by both shape characteristics, i.e., local radius of curvature and sheet thickness, and material properties such as yield strength. This work presents results of a study on the effect of work hardening and bake hardening on dent resistance of aluminum alloy sheet parts by considering the forming condition and baking temperature.

Optimal design of Natural Fiber Composite Structure for Automobile

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.21-24
    • /
    • 2016
  • In this study, a optimal design on the hood automotive using eco-friendly natural fiber composites is performed. The hood of an automobile is determined by dividing the Inner panel shape through optimization phase to outer panel and inner panel. It was performed to optimize the size of the thickness of the inner panel and the outer panel by applying a flax/epoxy composite materials. The optimized shape was evaluated for weight-lightening, stability and the pedestrian collision safety. Through the resin flow analysis are confirmed to molding possibility judgment of product.