• 제목/요약/키워드: Automotive Hub Bearing

검색결과 9건 처리시간 0.024초

차량 주행 상태에서 허브 베어링 이상을 진단할 수 있는 장치 개발 (Development of Diagnosis System for Hub Bearing Fault in Driving Vehicle)

  • 임종순;박지헌;김진용;윤한수;조용범
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.72-77
    • /
    • 2011
  • In this paper, we propose effective diagnosis algorithm for hub bearing fault in driving vehicle using acceleration signal and wheel speed signal measured in hub bearing unit or knuckle. This algorithm consists of differential, envelope and power spectrum method. We developed diagnosis system for realizing proposed algorithm. This system consists of input device including acceleration sensor and wheel speed sensor, calculation device using Digital Signal Processor (DSP) and display device using Personal Digital Assistant (PDA). Using this diagnosis system, a driver can see hub bearing fault(flaking) from the vibration in driving vehicle. With early repairing, he can keep good ride feeling and prevent accident of vehicle resulting from hub bearing fault.

승용차용 Wheel Bearing Hub Unit 설계를 위한 주행 하중조건의 실험적 연구 (Experimental Study of Driving Load Conditions for the Wheel Bearing Hub Unit of Passenger Car)

  • 김기훈;유영면;임종순
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.166-173
    • /
    • 2002
  • The wheel bearing hub unit is developed type of wheel bearing unified with the hub parts. It has advantage of reducing the weight and the number of components. And, it also improves uniformity of manufacturing quality, In order to design the wheel bearing hub units, many techniques are used such as load analysis, structure analysis and bearing characteristics analysis and so forth. These techniques need highly accurate load conditions founded on service conditions. In this study, to design the wheel bearing hub units used widespread in passenger cars, the service load was measured through driving tests on the public roads and in the special events. The public roads are classified into highway, intercity road, rural road, urban road, and unpaved road so as to know what the characteristics of the road loads are. The results of the tests showed that the wheel force was relative to the lateral acceleration, and also could be calculated from the lateral acceleration. The lateral acceleration was measured from 0.0G to 0.6G in general driving on the public roads, with different distributions in each road type. In special events, the maximum lateral acceleration was measured from 0.8G to 1.3G.

외연적 유한요소법을 이용한 자동차 Hub Bearing의 Orbital Forming해석에 관한 연구 (A Study on Orbital Forming Analysis of Automotive Hub Bearing using the Explicit Finite Element Method)

  • 조현직;구정서;배원락;임종순
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.29-36
    • /
    • 2008
  • In this paper, the orbital forming analysis of an automotive hub bearing was studied to predict forming performances using the explicit finite element method. To find an efficient solution technique for the orbital forming, axisymmetric finite element models and 3D solid element models were solved and numerically compared. The time scaling and mass scaling techniques were introduced to reduce the excessive computational time caused by small element size in case of the explicit finite element method. It was found from the numerical simulations on the orbital forming that the axisymmetric element models showed the similar results to the 3D solid element models in forming loads whereas the deformations at the inner race of bearing were quite different. Finally the strains at the inner race of bearing and the forming forces to the peen were measured for the same product of the numerical model by test, and were compared with the 3D solid element results. It was founded that the test results were in good agreements with the numerical ones.

자전거 허브 베어링의 구조적 내구성 해석에 관한 연구 (Structural Durability Analysis of Bike Hub Bearing)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.99-104
    • /
    • 2015
  • As riders do not sense damage to hub bearings due to the friction that occurs while riding, unexpected accidents can happen. Hub bearings can also be broken by cracks due to minor impact. Therefore, the vibration analysis of bike hub bearings is thought to be important. Two bike hub bearings were modelled in this study. The bolts at both ends of the bearings were fixed. The standard weight of a Korean man was assumed to be 70Kg, and a force of 700N was applied. As a result of this study, maximum deformations occurred in bolts at both ends of the central axis. Regarding displacement due to natural frequencies, Model 2 had less deformation than Model 1. Using the results of this study, the structural safety of the design of hub bearings can be estimated, and design plans for durable hub bearings can be suggested.

휠 베어링용 밀봉 시일 설계를 위한 시일 립의 밀착력 예측 (Prediction of the Reaction Force for Seal Lip Design with Wheel Bearing Unit)

  • 김기훈;유영면;임종순;이상훈
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.165-172
    • /
    • 2001
  • Wheel bearing units were almost exclusively used for car front wheel, where the two ball rows are directly side by side with integrated rubber seal. The seal is of important for wheel bearing units due to the adverse environmental conditions with mud and splash water. The seal of wheel bearing units was designed to have geometry with multi lips, which elastic lip contacts and deforms with bearing. The equation of reaction force for deformed lip as cantilever beam was previously used for seal lip design. But it's result was not useful because deflection of the beam differs from lip's. In this study, deformed shape of the lip was assumed to and order function which is more similar to lip deformation and made the equation for reaction force prediction. The Reaction forces from each other equations were compared with results by FEA to prove usefulness of new equation.

  • PDF

자동차 드라이브 샤프트와 액슬 시스템의 트라이볼로지적인 특성에 관한 고장사례 고찰 (Failure Examples Study for Tribological Characteristics of Drive Shaft and Axle System in Vehicles)

  • 이일권;문학훈;염광욱
    • Tribology and Lubricants
    • /
    • 제29권6호
    • /
    • pp.397-402
    • /
    • 2013
  • This study examined the tribological characteristics of the drive shaft and axle system in vehicles. The first drive shaft example contained end play for a CV joint that transferred part of the transmission power to the wheel. The joint part of the drive shaft was deformed because of reduced durability due to wear. Thus, vibrations caused the body to shake and become unbalanced when the drive shaft transferred the power. The second example was the cross-section of a shaft that connected the slip-connection of the propeller shaft on the input side to the yoke flange of the output side; the durability was reduced because of corrosion. End play caused by wear between the bearing and cross-section shaft appeared to cause shaking. In the third example, a grease leak reduced lubrication and thus caused damage to the hub bearing and inside the knuckle. The failure was produced by sticking. The fourth example had noise produced by the gear and gear transfer. This was due to the backlash of the pinion and few ring gears for the differential gear. Therefore, drive shaft and axle systems must be thoroughly checked and managed to minimize and reduce failure phenomena.

Wheel Bearing Unit의 구조해석을 위한 경계조건 설정에 관한 연구 (Evaluation of Boundary Conditions for Structural Analysis of Wheel Bearing Units)

  • 김기훈;유영면;임종순;현준수
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.230-237
    • /
    • 2000
  • The wheel bearing in vehicles has been improved to unit module by joining a bearing to a hub in order to achieve weight reduction and easy assembly. Currently, the contact force between a raceway and balls of a bearing is applied as the external force in order to analyse the structure of the unit type bearings. In this paper, simplified boundary conditions are discussed for structure analysis of wheel bearing unit. From the procedure, the contact conditions of balls and race in wheel bearing unit are considered as equivalent non-linear spring elements. The end node of a spring element is constrained in displacement. And the external force of boundary conditions is applied at the contact point between tire and road. For the evaluation of this analysis, its results for the force of spring elements are compared with contact forces of calculated results. and also maximum equivalent stresses of analysis are compared with results of test at the flange of inner ring. The analysis results with proposed boundary conditions are more accurate than results from analysis which is generally used.

  • PDF

허브 베어링 유닛 수명 예측 프로그램 개발 (Development of a fatigue life Prediction Program for the Hub Bearing Unit)

  • 황철하;전갑진;윤지원;박태원;김승학;이경돈
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.142-151
    • /
    • 2005
  • To predict the fatigue life of the Hub Bearing Unit(HBU), preload effect and initial axial clearance have to be considered. Various theory and equations for the HBU design used in the passenger car are well developed in many literatures. But most design hand book for bearings or bearing catalogues do not consider the initial axial clearance and preload effect. So there are limits and difficulties to use those data in actual bearing design. To consider the preload effect and initial axial clearance, complex elliptic integrals and nonlinear equations are involved. These equations are difficult to solve during the design process. In order to solve these problems effectively, a program is developed to solve these equations reliably and to help the designer in obtaining the performance data of the HBU such as load distribution, maximum contact stress and fatigue life. The preprocessor of the program helps users to prepare the input data through a dialog box and the post processor makes graphical presentation of the result. In this paper, theoretical and numerical background for the prediction of the fatigue life of the HBU is explained. A simple example is presented to show the usefulness of developed program.