• 제목/요약/키워드: Automotive Exhaust

검색결과 886건 처리시간 0.02초

오염물질 현장측정 및 사례조사를 통한 도로터널 환기기준의 적정성에 관한 연구 (An appropriateness review on the road tunnel ventilation standards by pollutants site measurement and case study)

  • 김효규;백두산;유지오
    • 한국터널지하공간학회 논문집
    • /
    • 제22권3호
    • /
    • pp.323-335
    • /
    • 2020
  • 본연구에서는 현행 도로터널의 환기설계기준의 적정성을 검토하기 위하여 사례조사를 수행하고, 5개 터널을 대상으로 입자상 및 가스상 물질의 농도를 현장측정 하였다. 사례조사 결과는 설계기준 대비 TSP (가시도)는 27.9%, CO는 1.6%, NOx는 3.4% 수준으로 분석되었고, 현장측정 결과는 각각 2.6%, 0.8%, 0.2%의 수준에 불과하였다. 또한 5개 터널에 대한 입자상물질(TSP)의 입경분석 결과, 타이어 마모, 재부유 분진 등의 입자라 할 수 있는 PM10 이상의 입경의 영역은 20.4%로 나타났다. 따라서 현행 도로터널 환기설계 기준으로 제시된 입자상물질은 엔진배출량 외에 비엔진배출량에 대한 고려가 반드시 필요하며, 최근의 연구결과를 통한 제작차 오염물질 배출량 및 경사속도 보정계수 등을 적용하여 대상오염물질에 대한 설계기준의 합리적인 개정이 요구되며 WRA (PIARC)에서도 환기설계 기준의 개정 필요성을 권고하고 있다. 현행 터널 내 낮은 환기설비(제트팬) 가동율을 고려할 경우 향후 터널 내 운영상 관리기준의 신설에 대한 필요성이 제기된다.

소형차 전용 도로터널의 화재 위험도 평가기법개발 및 적용성에 관한 연구 (A study on the development and applicability of fire risk assessment method for small road tunnels passing only small cars)

  • 류지오;최판규
    • 한국터널지하공간학회 논문집
    • /
    • 제20권6호
    • /
    • pp.917-930
    • /
    • 2018
  • 도로터널의 방재시설 설계에 화재 위험을 정량적으로 평가하기 위한 정량적 위험도 평가기법이 소방시설물에 대한 성능위주 설계의 일환으로 도입되어 전차종이 통과하는 대단면 터널에 대한 방재시설의 적정성을 평가하는데 활용되고 있다. 그러나 현재 도로 터널에 도입하고 있는 정량적 위험도 평가기법은 대단면 터널에만 적용이 가능하기 때문에 최근 건설이나 계획이 증가하는 소형차 전용 도로터널에 대한 정량적 위험도 평가기법의 개발 필요성이 대두되게 되었다. 이에 본 연구에서는 기존의 터널에 대한 정량적 위험도 평가기법을 기반으로 하여 소형차 전용 도로터널에 적합한 화재발생 시나리오를 제시하고 소형차 전용의 모델터널에 대해서 피난연결통로 간격에 따른 위험도를 분석하고 적용성을 검토하였다. 그 결과로 소형차 전용도로터널의 경우, 현행 사회적 위험도 평가기준을 만족하기 위한 피난연결통로의 적정 간격은 200 m로 평가되었다. 또한 소형차 전용터널에 대한 제배연방식에 따른 위험도를 비교한 결과, 제트팬에 의해서 기류제어가 가능한 대배기구방식이 피난안전확보에 효과적인 것으로 분석되었다.

CNG 버스용 NGOC+LNT+SCR 촉매시스템의 특성 (Characteristics of Catalysts System of NGOC-LNT-SCR for CNG Buses)

  • 서충길
    • 한국산학기술학회논문지
    • /
    • 제20권4호
    • /
    • pp.626-631
    • /
    • 2019
  • 친환경자동차의 보급 확대를 위한 정책수립과 기술개발이 지속적으로 이루어지고 있는 실정이나 아직까지도 내연기관이 차지하는 비중은 약 95% 차지하고 있다. 화석연료를 기반으로 하는 내연기관의 엄격한 배기가스규제를 충족시키기 위해 자동차와 선박용 후처리장치의 비중이 점차로 증가하고 있다. 이 연구는 CNG 버스의 post Euro-VI 배기대응을 위한 기초연구로써, Pd 대체 전이금속 영향, 촉매 체적 영향 그리고 공간속도에 따른 기초 특성을 파악하는 것이다. 촉매는 제조되었고 모델가스반응장치로 실험하였다. 3Pd가 포함된 NGOC 촉매는 $300^{\circ}C$에서 22%, $350^{\circ}C$에서 48% 그리고 $500^{\circ}C$에서 약 75%의 $CH_4$ 저감 능력을 나타내며 촉매 활성이 가장 높았다. 전이금속 3wt%가 포함된 3Co NGOC는 산화능력이 우수한 물질로써, 2nm급의 작은 사이즈로 촉매 분산도가 향상되어 de-NO/CO 전환율이 높았다. NGOC+LNT+SCR 촉매시스템의 체적은 $De-CH_4/NOx$ 성능과 촉매비용을 고려할 때 Total score가 165를 나타낸 1.5+0.5+0.5 조합이 최적이었다. SV $14,000h^{-1}$일 경우 $CH_4$ 저감 성능은 약 20% 수준으로 가장 높았고, SV $56,000h^{-1}$의 경우가 약 5% 수준으로 가장 낮았다. 공간속도가 작으면 유속이 감소하여 촉매 체적에 잔류하는 시간이 길어지므로 유해가스가 저감되었기 때문이다.

Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동 (Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method)

  • 김성준;임태섭;김봉구;손정훈;정연길
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제28권6호
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.