• Title/Summary/Keyword: Automotive Components

Search Result 815, Processing Time 0.025 seconds

Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric Rotor Design in IPM Motor

  • Hwang, Yong-Suk;Yoon, Myung-Hwan;Park, Jin-Cheol;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.266-274
    • /
    • 2017
  • In this paper, torques of two motors are compared by Finite Element Analysis (FEA). One has a symmetric rotor structure and the other has an asymmetric rotor structure. The comparison shows that the asymmetric rotor structured motor has reduced torque ripple compared to the symmetric. The torque of the compared motor models was analyzed by separating into magnetic torque and reluctance torque. Through the analysis of torque component separated, it is shown that the magnetic torque and the reluctance torque compensate each other in the motor with the asymmetric structure rotor. Here "compensate" means decrementing the effect of one or more harmonics. It is shown how this compensation appears between the magnetic torque and the reluctance torque by looking into back electro motive force (emf) and the relative permeability distribution of rotor core.

Shape and Thickness Optimization of an Aluminium Duo-type LPG Tank for a Passenger Car (승용차용 알루미늄 듀오타입 LPG 탱크의 형상 및 두께 최적설계)

  • So, Soon-Jae;Choi, Gyoo-Jae;Jang, Gang-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.131-135
    • /
    • 2013
  • In this study, to develop a light weight duo type aluminum LPG tank in stead of a conventional steel tank optimization technology is used. Two types of optimization method are carried out for internal compression test simulation of a LPG tank. The first is the thickness only optimization of LPG tank components. The second is the thickness and shape optimization. For the case of the thickness only optimization the weight reduction rate of an optimized tank compare to that of the initial design is 42%. Also 48% weight reduction was achieved for the case of the thickness and shape optimization.

QUALITY STABILIZATION OF BALL SEAT IN AUTOMOTIVE SUSPENSION PARTS

  • KANG T.-H.;KIM I.-K.;KIM Y.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.507-511
    • /
    • 2005
  • Recently, many solution have been suggested to development of plastic products. Among many manufacturing technologies for plastic parts, the injection molding process is very attractive because of its low production cost and short cycle time. In this paper, the plastic ball seat of a ball joint, one of the essential components for automotive suspension or steering system, was studied to enhance its mechanical performance and durability by using PA66 that is reinforced polymeric plastic resin. But ball seat has some trouble in manufacture process. And strength of molded part is not enough to use. For the quality stabilization and reliability of injection molded parts, we designed the mold cavities through analytical simulation software and tested the mechanical performance for the injection molded ball-seat parts. After modification, tensile strength increases by about $13.5\%$. Strength and quality stabilization is improved.

Leakage Magnetic Field Suppression Using Dual-Transmitter Topology in EV Wireless Charging

  • Zhu, Guodong;Gao, Dawei;Lin, Shulin
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.625-636
    • /
    • 2019
  • This paper proposes an active leakage magnetic field (LMF) suppression scheme, which uses the dual-transmitter (DT) topology, for EV wireless charging systems (EVWCS). The two transmitter coils are coplanar, concentric and driven by separate inverters. The LMF components generated by the three coils cancel each other out to reduce the total field strength. This paper gives a detailed theoretical analysis on the operating principles of the proposed scheme. Finite element analysis is used to simulate the LMF distribution patterns. Experimental results show that when there is no coil misalignment, 97% of the LMF strength can be suppressed in a 1kW prototype. These results also show that the impact on efficiency is small. The trade-off between LMF suppression and efficiency is revealed, and a control strategy to balance these two objectives is presented.

Model-based Sensor Fault Detection Algorithm for EMB System (EMB 시스템의 모델 기반 센서 고장 검출 알고리즘 개발)

  • Hwang, Woo-Hyun;Yang, I-Jin;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • The brake-by-wire technology is a new automotive chassis system that allows standard braking operations by electronic components with lighter weights and faster response. The brake-by-wire units such as EMB (Electro-Mechanical Brake) are controlled by electronic sensors and actuators and, thus, the fault diagnosis is essential for implementation. In this study, a model-based fault diagnosis system is developed for the sensors based on the analytical redundancy method. The fault detection algorithm is verified in simulations for various faulty cases. A test bench is built including the EMB unit and the performance of the proposed fault diagnosis system is evaluated through the experiment.

A study of charge and discharge strategy analysis on HEV battery under urban dynamometer driving schedule (도시운전모드 하에서 HEV 배터리 충.방전 전략 분석에 대한 연구)

  • Kim, Seong-Gon;Jeong, Ki-Yun;Yang, In-Beom;Kim, Deok-Jin;Lee, Chun-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.247-249
    • /
    • 2007
  • Urban dynamometer driving schedule(FTP-75 mode) plays very significant role on automotive emission test, due to reference point. The overall system energy efficiency of a HEV(Hybrid Electric Vehicle) is highly dependent on the energy management strategy employed. An energy source is the heart of a HEV. In order to applicable to a vehicle component, it must be need to real world test result. But, the present state of things have numerous problems. In this paper, be studied performed based on HEV simulation software in virtual world and chassis dynamometer test in real world and the result make a comparative. Toyota Prius vehicle was adapted as a modeling and real testing to evaluate the hybrid components and energy balancing management. The point at issue is voltage and current analysis for HEV battery SOC(State of Charge), and verification for energy.

  • PDF

Light-weight Design of Automotive Spring Link Based on Computer Aided Engineering (컴퓨터 시뮬레이션을 이용한 자동차용 스프링 링크의 경량화 설계)

  • Park, Jun-Hyub;Kim, Kee Joo;Yoon, Jun-Gyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.157-161
    • /
    • 2013
  • It is well known that the targeted fuel efficiency could only be achieved by more than 40% reduction of the vehicle weight through improved design and extensive utilization of lightweight materials. In order to obtain the goal of the weight reduction of automobiles, the researches about lighter and stronger spring link have been studied without sacrificing the safety of automotive components. In this study, the weight reduction design process of spring link could be proposed based on the variation of von-Mises stress contour by substituting an aluminum alloys (A356) having tensile strength of 245 MPa grade instead of SAPH440 steels. In addition, the effect of the stress and stiffness on shape variations of the spring link were examined and compared carefully. It could be reached that this approach could be well established and be contributed for light-weight design guide and the safe design conditions of the automotive spring link development.

Experimental Study on the Hydraulic Power Steering System Noise (유압식 동력 조향장치의 소음에 대한 실험적 연구)

  • Lee, Byung-Rim;Choi, Young-Min;You, Chung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.165-170
    • /
    • 2009
  • Pressure ripple, vibration and noise level are measured in each parts of the power steering system. MD(Mahalanobis Distance) is calculated by using MTS(Mahalanobis Taguchi System) with measured data, and noise sensitive components are selected. The components applied detail design parameters are made and data is measured. After that MD is calculated also. Mean value and SN ratio can be obtained from the MD. Effective noise reduction technique and dominant design parameters in hydraulic power steering system are introduced.

STEADY-STATE OPTIMIZATION OF AN INTERNAL COMBUSTION ENGINE FOR HYBRID ELECTRIC VEHICLES

  • Wang, F.;Zhang, T.;Yang, L.;Zhuo, B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.361-373
    • /
    • 2007
  • In previous work, an approach based on maximizing the efficiency of an internal combustion engine while ignoring the power conversion efficiency of other powertrain components, such as the electric motor and power battery or ultracapacitor, was implemented in the steady-state optimization of an internal combustion engine for hybrid electric vehicles. In this paper, a novel control algorithm was developed and successfully justified as the basis for maximal power conversion efficiency of overall powertrain components. Results indicated that fuel economy improvement by 3.9% compared with the conventional control algorithm under China urban transient-state driving-cycle conditions. In addition, using the view of the novel control algorithm, maximal power generation of the electric motor can be chosen.

Simulator for Hydraulic Excavator

  • Lim, Tae-Hyeong;Lee, Hong-Seon;Yang, Soon-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2071-2075
    • /
    • 2005
  • Hydraulic excavators have been popular devices in construction field because of its multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of nonlinear opening characteristics and dead zone of main control valve, oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and whole circuit are expressed graphically. Parameters and nonlinear characteristics are inputted in text style. The simulator can be used to forecast excavator behavior when new components, new mechanical attachments, hydraulic circuit changes, and new control algorithm are applied. The simulator could be a kind of development platform for various new excavators.

  • PDF