• 제목/요약/키워드: Automobile design

검색결과 1,169건 처리시간 0.023초

배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구 (A Study on Net-shape Technology of Automotive Lock-up Hub using Cold Back Pressure Forming)

  • 권용철;이정환;이영선
    • 소성∙가공
    • /
    • 제17권2호
    • /
    • pp.124-129
    • /
    • 2008
  • Net shape forging technologies give many effects into the costs and qualities for the finished products. So, the studies to reduce the additional machining amount are very important in forging industry. Specially, there are two main topics in cold forging industry, such as, tool life and precision forging. In this study, new forging technique was proposed to eliminate the machining process for fixing up the length and improve the lead accuracy of gear. The luck-up hub is manufactured through many processes, such as upsetting, piercing and direct extrusion. The gear is formed in direct extrusion process; however, lead accuracy of the gear is over allowance limit. Therefore, the additional sizing process must be added. In this study, process design for closed-die forging of a lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

Ni, Mn 첨가와 열처리에 따른 TiAl 미세 조직 변화 (The Variation of TiAl microstructure with Ni, Mn alloying and Heat Treatment)

  • 문종태;이승헌;한복수;신봉문;이용호
    • 열처리공학회지
    • /
    • 제10권3호
    • /
    • pp.181-187
    • /
    • 1997
  • TiAl intermetallic compound was candidated for the application to the high temperature materials such as a gas turbine exhaust valve in the automobile. However, this material dose not have ductility allowing to machinability to product. To improve the ductility, many researches conduct alloy design and heat treatment methods. We observed that the microstructure of TiAl varied with Ni, Mn elements as well as a heat treatment condition. In the case of Ni element addition, the TiAlNi intermetallic compound was precipitated at the grain boundary. When the heat treatment temperature increased from $1000^{\circ}C$ to $1300^{\circ}C$, the TiAlNi intermetallic compound was uniformly dispersed on the matrix. In the case of Mn element addition, the mixed duplex structure of ${\gamma}$-TiAl and lamellar(TiAl/$Ti_3Al$) was obtained with $1250^{\circ}C$ and $1300^{\circ}C$ heat treatment for 1 hour. When the heat treatment temperature increased from $1250^{\circ}C$ to $1300^{\circ}C$, the lamellar domain of the duplex structure was transformed near-lamellar structure.

  • PDF

대형 디젤엔진용 SCR 시스템의 암모니아 슬립 억제를 위한 인젝터의 형상 및 위치에 관한 수치적 연구 (Numerical Study on the Injector Shape and Location of Urea-SCR System of Heavy-duty Diesel Engine for Preventing $NH_3$ Slip)

  • 정수진;이상진;김우승;이춘범
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.68-78
    • /
    • 2006
  • In the past few years, considerable efforts have been directed towards the further development of Urea-SCR(selective catalytic reduction) technique for diesel-driven vehicle. Although urea possesses considerable advantages over Ammonia$(NH_3)$ in terms of toxicity and handling, its necessary decomposition into Ammonia and carbon dioxide complicates the DeNOx process. Moreover, a mobile SCR system has only a short distance between engine exhaust and the catalyst entrance. Hence, this leads to not enough residence times of urea, and therefore evaporation and thermolysis cannot be completed at the catalyst entrance. This may cause high secondary emissions of Ammonia and isocyanic acid from the reducing agent and also leads to the fact that a considerable section of the catalyst may be misused for the purely thermal steps of water evaporation and thermolysis of urea. Hence the key factor to implementation of SCR technology on automobile is fast thermolysis, good mixing of Ammonia and gas, and reducing Ammonia slip. In this context, this study performs three-dimensional numerical simulation of urea injection of heavy-duty diesel engine under various injection pressure, injector locations and number of injector hole. This study employs Eulerian-Lagrangian approach to consider break-up, evaporation and heat and mass-transfer between droplet and exhaust gas with considering thermolysis and the turbulence dispersion effect of droplet. The SCR-monolith brick has been treated as porous medium. The effect of location and number of hole of urea injector on the uniformity of Ammonia concentration distribution and the amount of water at the entrance of SCR-monolith has been examined in detail under various injection pressures. The present results show useful guidelines for the optimum design of urea injector for reducing Ammonia slip and improving DeNOx performance.

대형디젤기관에서 연속재생방식 PM저감장치장착에 따른 유동 및 성능에 관한 수치해석적 연구 (A Study on Prediction of Flow Characteristics and Performance of a Heavy-Duty Diesel Engine with Continuously Regenerating Method PM Reduction)

  • 한영출;문병철;오상기;백두성
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.52-57
    • /
    • 2005
  • The increasing automobiles continue to cause air-pollution problem s worse than ever. In fact, many automobile research are involved in how to reduce exhaust emissions effectively specially in $NO_X$ and PM to comply with stringent emission standards, Euro V. This research emphasized on the development of continuous regeneration DPF technology which was one of promising removing technology of particulate matters because of its comparability and high applicability. In addition, this research discussed on some design points of view through correlation study by com paring the experimental data with computational results by the introduction of commercial codes such as CFD-ACE+ and KIVA-3V. The numerical simulation on the performance of continuous regeneration DPF apparatus and corresponding emission characteristics has been predicted well enough and verified with experimental results. The pressure and average temperatures are decreased to about 2.6% and 1.4% respectively under a full engine load condition mainly due to back pressures raised by diesel particulate filter. Pressure, temperature and heat releasing rates tend to decrease specially at higher engine load, but they are not affected at lower engine load regions.

차량 NVH개선 설계를 위한 샤시 구동계의 Driveline Test Bench 구성 및 CAE 해석 (Modeling and CAE Simulation of Chassis Driveline Test Bench for Vehicle NVH Improvement)

  • 김기주;주형준;이용헌;배대성;성창원;백영남;손일선
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.114-119
    • /
    • 2009
  • The authors have investigated the NVH problems of drive system in full vehicle test. However it is difficult to define the NVH problems of driveline system. Since it is hard to measure the rotating part and it is vague that only the drive system induces the NVH problem. Vibration in a driveline is presented in this paper. In the experiment, the rear sub-frame and propeller shafts and axle were composed and mounted with rubber each other. For applying the vibration input instead of the torsional vibration effect of an engine, the shaker was taken. In particular, torsional vibration due to fluctuating forced vibration excitation across the joint between driveline and rear sub-frame was carefully examined. Accordingly, the joint response was checked from experiments and the FE-simulation using FRF (frequency response function) analysis was performed. All test results were signal processed and validated against numerical simulations. In present study, the new test bench for measuring the vibration signal and simulating the vehicle chassis system was proposed. The modal value and the mode shape of components were analyzed using the CAE model to identify the important components affecting driveline noise and vibration. It could be reached that the simplified test bench could be well established and be used for design guide and development of the vehicle chassis components.

주행중인 자동차 환경에서의 음성인식 연구 (A Study on Speech Recognition in a Running Automobile)

  • 양진우;김순협
    • 한국음향학회지
    • /
    • 제19권5호
    • /
    • pp.3-8
    • /
    • 2000
  • 본 논문은 주행중인 자동차 환경에서의 음성인식에 대하여 연구하였다. 여기에서 사용한 기준패턴(reference pattern)은 DMS(Dynamic Multi-Section)이며, 인식율을 높이기 위하여 2모델을 제안하였다. 또한 가변적인 차량의 잡음환경에 강인하기 위하여 일반주행(80km/h 이내), 고속주행(80km/h 이상)등으로 나누었으며 차량의 잡음에 따라 자동으로 선택하도록 하였다. 음성의 특징 벡터와 인식 알고리즘은 PLP(Perceptual Linear Predictive) 13차와 OSDP(One-Stage Dynamic Programming)를 사용하였다. 그리고 핸드폰을 사용하는 운전자의 안전을 위하여 음성으로 전화를 걸 수 있도록 하는 전화번호 등록 및 제어기능의 Voice Dialing 기능을 추가하였다. 실험결과 주행중인 자동차 환경에서 자주 사용되는 차량 편의장치 제어명령 33개에 대하여 중부, 영동 고속도로(시멘트 도로 80km/h이상)에서 남성 화자독립 89.75%의 인식율을 구하였으며, 경부고속도로(아스팔트 도로 80km/h이상)에서는 남성화자독립 92.29%의 인식율을 구하였다.

  • PDF

고장력강의 구멍 확장 실험을 이용한 자동차부품 설계연구 (A Study of Automobile Product Design using Hole Expansion Testing of High Strength Steels)

  • 박병철;배경운;구선모;장승현;홍성훈;김영석
    • 소성∙가공
    • /
    • 제19권6호
    • /
    • pp.337-343
    • /
    • 2010
  • Current need of weight reduction in automotive part increases the application for high strength steel (HSS). The various types of high strength steels have been used to produce chassis part, control arms and trailing arms for weight reduction and increasing of fatigue durability such as dual phase steel (DP) and ferrite bainite steel (FB). But, DP and FB steels have proven to show inferiority in durability as well as press formability. Edge cracking occurred often in flange forming and hole expansion processes is the major failure encountered. This paper discussed the behavior of edge stretchability of high strength steel of DP and FB steels. Experimental works have been conducted to study the effect of punch clearance and burr direction on hole expansion ratio (HER). Also finite element simulation (FEM) has been preformed to clarify the mechanism of flange crack and support the experimental results on HER of DP and FB steels. It was simulated the whole process of blanking process following by hole expansion process and ductile fracture criterion named the modified Cockcroft-Latham model which was used to capture the fracture initiation. From the hole expansion tests and FEM simulation studies it was concluded that ferrite bainite steel showed better stretch-flangeability than dual phase steel. It was attributed to the lower work hardening rate of ferrite bainite steel than dual phase steel at the sheared edge.

정보 입자에 근거한 개선된 언어적인 모델의 설계 (A Design of an Improved Linguistic Model based on Information Granules)

  • 한윤희;곽근창
    • 전자공학회논문지CI
    • /
    • 제47권3호
    • /
    • pp.76-82
    • /
    • 2010
  • 본 논문은 수치적인 입출력데이터로부터 언어적인 규칙을 생성시키기 위한 체계적인 접근방법으로써 정보입자(information granules)에 근거한 언어적인 모델(LM: Linguistic Model)을 발전시킨다. Pedrycz에 의해 소개된 언어적인 모델은 컨텍스트 기반 퍼지 클러스터링(CFC: Context-based Fuzzy Clustering)으로부터 얻어지는 퍼지 정보입자에 의해 수행되어지며, 이는 입력과 출력공간과 연관된 클러스터 된 데이터들의 동질성을 보존하도록 클러스터를 추정한다. 언어적인 모델의 효능성은 이전 연구에서 이미 증명되었음에도 불구하고 성능 측면에서 개선시킬 필요성이 있다. 따라서, 본 논문에서는 기존 언어적인 모델의 근사화와 일반화 성능을 모두 향상시키기 위해 언어적인 컨텍스트의 자동적인 생성, 바이어스항의 추가, 결론부 파라미터의 변형된 구조를 통해 이루어진다. 실험결과는 자동차 연료소비량 예측문제와 보스턴 housing 데이터를 통해 제안된 방법이 언어적인 모델뿐만 아니라 기존 방법들보다 우수함을 증명한다.

EMI 개선을 위해 자동차용 전력변환기에 적용된 주파수 확산 기법 분석 (An Investigation of EMI Reduction Technique using the Spread Spectrum for an Automotive Power Converter)

  • 채규수
    • 한국융합학회논문지
    • /
    • 제9권2호
    • /
    • pp.1-6
    • /
    • 2018
  • 본 연구에서는 전기 자동차용 DC/DC converter 회로의 전도성/복사성 방사 분석 결과를 제시하고 있다. 일반적으로 사용되는 MPQ4433 칩을 이용한 전력 변환회로의 EMI 특성을 개선하기 위해 주파수 확산 회로를 적용하였다. TLV3201칩을 사용한 주파수 확산 회로가 설계되어 전력변환 회로에 적용되었다. EMI 시뮬레이션을 통해 최적의 PCB 제작되었으며, 제작된 회로를 이용하여 원거리 방사, 근거리 전도 및 복사 방출에 대한 시뮬레이션과 측정 결과가 제시되었다. 전도 및 방사 방출은 CISPR 25의 표준화 된 시험 절차에 따라 측정되었으며 주파수 확산이 적용된 경우에 EMI 특성이 약 20% 개선되는 결과를 얻었다. 본 연구에서 제안 된 주파수 확산을 이용한 EMI 저감 기술은 자동차용 전력 컨버터 모듈의 설계에 처음 적용되었으며 향후 EMI 개선에 효과적으로 사용될 수 있을 것으로 예상된다.

유한요소법을 이용한 하수슬러지 소각재의 인공경량골재 제조시 압출성형해석 (The Numerical Analysis of Extrusion Forming on the Manufactured Artificial Lightweight Aggregate Made of Incinerated Sewage Sludge Ash by a Finite Element Method)

  • 정병길;배진우;성낙창
    • 한국환경과학회지
    • /
    • 제16권10호
    • /
    • pp.1169-1177
    • /
    • 2007
  • The main objective of this research was to evaluate the effects of process variables which were forming ability, flow displacement, effective stress, effective strain, fluid vector and products defects on manufactured artificial lightweight aggregate made of both incinerated sewage sludge ash and clay by means of the numerical analysis of a rigid-plastic finite element method. CATIA (3D CAD program) was used for an extrusion metal mold design that was widely used in designing aircraft, automobile and metallic molds. A metal forming analysis program (ATES Co.) had a function of a rigid-plastic finite element method was used to analyze the program. The result of extrusion forming analysis indicated clearly that a shape retention of the manufactured artificial light-weight aggregate could be maintained by increasing the extrusion ratio (increasing compressive strength inside of extrusion die) and decreasing the die angle. The stress concentration of metal mold was increased by increasing an extrusion ratio, and it was higher in a junction of punch and materials, friction parts between a bottom of the punch and inside of a container, a place of die angle and a place of die of metal mold. Therefore, a heat treatment as well as a rounding treatment for stress distribution in the higher stress concentration regions were necessary to extend a lifetime of the metallic mold. A deformity of the products could have made from several factors which were a surface crack, a lack of the shape retention and a crack of inside of the products. Specially, the surface crack in the products was the most notably affected by the extrusion ratio.