• Title/Summary/Keyword: Automobile air conditioning system

Search Result 59, Processing Time 0.022 seconds

Effect of a Variation of a Main Duct Area on Flow Distribution of Each Branch (주덕트의 단면적 변화가 분지덕트의 유량분배에 미치는 영향)

  • Lee Jai-Ho;Kim Beom-Jun;Cho Dae-Jin;Yoon Suck-Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.386-395
    • /
    • 2005
  • With the development of a living standard, the importance of indoor air conditioning system in all kinds of buildings and vehicles has increased. A lot of researches on energy losses in a duct and various kinds of flow pattern in branches or junctions have been carried out over many years, because the primary object of a duct system used in HVAC is to provide equal flow rate in the interior of each room by minimizing pressure drop. In this study, to get equal flow distribution in each branch, a blockage is applied to the rectangular duct system. The flow analysis for flow distribution of a rectangular duct with two branches was performed by CFD. By using SIMPLE algorithm and finite volume method, flow analysis is performed in the case of 3-D, incompressible, turbulent flow. Also, the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent fluid flow. The distribution diagrams of static pressure, velocity vector, turbulent energy and kinetic energy in accordance with variation of Reynolds number and blockages location in a rectangular duct show that flow distribution at duct outlets is improved by a blockage. In this rectangular duct system, mean velocity and flow rate distribution in two branch outlets are nearly constant regardless of variation of Reynolds number, and a flow pattern of the internal duct has a same tendency as well.

A Numerical Study of Automotive Indoor Thermal Comfort Model According to Boarding Conditions and Parameters Related to HVAC (HVAC 관련 매개변수 및 탑승조건에 따른 자동차 실내의 온열쾌적성 평가모델에 관한 수치해석적 연구)

  • Yoon, Seong Hyun;Park, Jun Yong;Son, Deok Young;Choi, Yunho;Park, Kyungseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.979-988
    • /
    • 2014
  • Recently, the interest in the thermal comfort is ever increasing as the time people stay in the automobile is gradually increasing. So far, however, the cooling performance of the HVAC(heating and ventilation air conditioning) system is evaluated by thermal environment criteria such as indoor air velocity and temperature, not by a thermal comfort index. Furthermore, the precise criteria has not been established yet when the thermal comfort for the automobile is evaluated using numerical analysis. In this study, the numerical analysis of automobile indoor thermal comfort according to various parameters such as HVAC operating mode, airflow, passenger boarding conditions is performed during the HVAC system's initial operating time(20 minutes). The solar ray tracing model and S2S radiation model are used and validated to simulate an external heat source. Based on this study, an evaluation model which can predict the thermal comfort index for the combination of the above parameters is presented.

Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive (악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발)

  • Chung, Wan-Young;Shim, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

Simulation on the performance of an automobile climate control system with Internal heat exchanger and TXV (내부열교환기와 TXV를 적용한 자동차용 공조시스템의 성능에 관한 수치적 연구)

  • Park, Cha-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2021
  • Recently, automobile air conditioning systems have applied an alternative refrigerant that can replace the high GWP refrigerant R134a due to the global warming problem. This study simulated the performance of an automobile climate control system with an internal heat exchanger and TXV. Refrigerant R1234yf was applied as the working fluid. Amesim, a commercial software program, was used to model the main components of the compressor, condenser, TXV, evaporator, and internal heat exchanger. As the outside temperature increased from 30℃ to 40℃, the cooling capacity of the system decreased by 3.1%, and the power consumption of the compressor increased by 17.1%. In addition, The performance characteristics of the refrigeration cycle were simulated by increasing the fin pitch of the condenser from 0.8 mm to 1.4 mm. When the fin pitch was larger than 1.0 mm, the condenser capacity decreased, and the system COP was lowered by 5.9%. When the fin pitch of the condenser was 0.8 mm, which was smaller than 1.0 mm, there was no significant change in the system performance. Hence, the optimal performance was observed at a fin pitch of 1.0 mm.

The Study on Performance Characteristics of $NH_3$ Refrigeration System for Various Degree of Superheat - Part II : The Change of Heat Exchanger Type - ($NH_3$ 냉동장치의 과열도 변화에 의한 성능 특성 연구 II -열교환기 타입 변경-)

  • Ha Ok-Nam;Kwon Il-Wook;Jeon Sang-Sin;Lee Seung-Jae;Jung Song-Tae;Ha Kyung-Soo;Yun Kab-Sig;Lee Jong-In;Hong Kyung-Han
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.297-302
    • /
    • 2005
  • Since the use of CFC and HCFC refrigerants are to be restricted due to the depletion of ozone layer, this experiment applies the $NH_3$ gas to study the performance characteristics of $NH_3$ refrigeration system by the superheat control for improving the energy efficiency. The experiments are carried out for the condensing pressure of refrigeration system from 1,500 kPa to 1,600 kPa and for degree of superheat from $0^{\circ}C\;to\;10^{\circ}C$ at each condensing pressure. As a result of experiment, when the degree of superheat is $0^{\circ}C$ at each condensing pressure, the refrigeration system has the highest performance.

High Performance Switched Reluctance Motor Drive for Automobiles using C-dump Converters

  • Song Sang-Hoon;Yoon Yong-Ho;Lee Tae-Won;Kim Yeun-Chung;Won Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.992-996
    • /
    • 2004
  • Small electric motors in an automobile perform various tasks such as engine cooling, pumping, and in heating, ventilating, and air-conditioning (HVAC) system. At present, most of dc motors are supplied by 12V or 24V batteries. However, DC motors surfer from lack of efficiency, low life cycles and unreliability. Therefore, there is a growing interest in substituting DC motors for advanced AC motors including switched reluctance motors. Although there are several other forms SRM converters, they are either unsatisfactory to the control performance or unsuitable for the 12V-battery powered 3-phase SRM drives. Taking into account the requirement for effective operation and simplicity structure of converter in the limited internal environment of automobiles, the author inclines toward selecting the modified C-dump converter as well as the energy efficient C-dump converter. This is so that more economical and efficient converter topology in automobile industries can be utilized. This paper describes the foundation for the design and development of a 12V-250W-3000rpm SRM drives for automobiles. Furthermore, complete circuit, computer simulation and experiment results are presented to verify the performance of the C-dump converters.

  • PDF

Development of Road Tunnel Ventilation System with Electrostatic Precipitator (도로터널용 전기집진시스템 개발)

  • Kim, Jong-Ryul;Weon, Jong-Oung
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.80-83
    • /
    • 2008
  • As SOC (Social Overhead Capital) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, we may need to introduce a compulsory ventilation system as well as natural ventilation mechanism. The natural ventilation mechanism is enough for short tunnels, meanwhile longer tunnels require a specific compulsory ventilation facility. Many foreign countries already have been devoting on development of effective tunnel ventilation system and especially, some European nations and Japan have already applied their developed tunnel ventilation system for longer road tunnels. More recently, as the quality of life improved, our concerns about safety of driving and better driving environment have been increased. In order to obtain clearer and longer driving view, we are more interested in EP tunnel ventilation system in order to remove floating contaminants and automobile exhaust gas. Evan though it's been a long time since many European countries and Japan applied more economical and environment-friendly tunnel ventilation system with their self-developed Electrostatic Precipitator, we are still dependant on imported system from foreign nations. Therefore, we need to develop our unique technical know-how for optimum design tools through validity investigation and continuous possibility examination, eventually in order to localize the tunnel ventilation system technology. In this project, we will manufacture test-run products to examine the performance of system in order to develop main parts of tunnel ventilation system such as electrostatic precipitator, high voltage power generator, water treatment system, etc.

  • PDF

Design technology of automobile air conditioning system (자동차용 에어콘의 설계기술)

  • 양시영;송영길
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.46-62
    • /
    • 1996
  • 최근 들어 이념에 따른 적대관계가 무너지고 국제화에 따른 무한경쟁체제에 돌입하게 됨에 따라 단순한 기술도입만으로는 생존할 수 없다는 인식하에 미력하나마 연구개발에 눈을 돌리기 시작하였다. 그런데 에어콘 부품관련 상당부분이 특허에 저촉되있어 이를 회피한 고효율 저소음의 독자 모델 개발에는 상당한 어려움이 뒤따르며 이는 산학연이 일체가 되어 해결해야할 문제로 판단된다. 즉 대학에서는 기초이론 정립, 설계관련 소프트웨어 개발, 기초설계 및 이론 해석쪽에 비중을 두고, 연구소에서는 이를 응용한 최적 및 양산설계를 그리고 산업체에서는 양산성 검토등 생산과 관련된 기술을 체계적이고 지속적으로 발전시켜나가야만이 기술선진국으로 발돋움 할 수 있다. 따라서 필자는 이와관련 선진 기술업체의 현황을 알아보고 제품설계에 필요한 기술등을 간단히 서술하므로써 자동차 에어콘에 관심을 갖고 있는 사람들에게 조금이나마 연구방향에 도움이 되었으면 한다. 본 내용의 대부분은 에어콘 설계 및 생산을 위하여 수집한 자료중에 일부를 발췌하여 기술하였으며 사안에 따라 다소의 차이가 있음을 미리 밝혀둔다.

  • PDF

Investigation on Heat Transfer in Scroll Compressor (스크롤 압축기 내부에서의 열전달에 대한 연구)

  • Jang, Ki-Tae;Jeong, Sang-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.199-204
    • /
    • 2003
  • In the present study, the compression process in scroll compressor was simulated in consideration of flow leakage and heat transfer. Tangential and radial leakages of the refrigerant between the scrolls were considered as nozzle flow. The experiment was first conducted with a scroll compressor for automobile air conditioning system and R134a as a refrigerant. Temperature and pressure were measured at the suction and discharge ports of the compressor to determine the thermodynamic states of the refrigerant flow. Temperature distribution of the scroll with the involute angle was also measured by thermocouples that were installed inside the scroll. Measured temperature distribution was compared with the numerical results. From this result, the thermal effect of mechanical contact was found to be important in heat transfer of the compression process.

  • PDF

Hardness Estimation of Compressor Journal for a Use of Instrumented Indentation Techniques (계장화 압입시험법을 이용한 차량용 컴프레서 저널 경도 평가)

  • Kwak, Sung-Jong;Jin, Ji-Won;Kim, Tae-Seong;Noh, Ki-Han;Kang, Ki-Weon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.376-381
    • /
    • 2012
  • This paper deals with application of instrumented indentation technique for quality inspection methodology for automobile component. For this, the instrumented indentation tests were performed the normal and cracked compressor journal, which is made from spheroidal graphite cast iron and utilized in air-conditioning system. And the Brinell hardness was estimated using the unloading slope and maximum indentation force. With the aid of Normal distribution, this Brinell hardness was statistically compared and analyzed with hardness measured by indentation hardness tests. Also, application possibility of reliability-based quality inspection criteria for compressor journal was evaluated through the probabilistic analysis for the Brinell hardness estimated by instrumented indentation technique.