• 제목/요약/키워드: Automobile Engine Cooling Fan

검색결과 7건 처리시간 0.024초

차량용 냉각 팬과 엔진 블럭의 간격 변화에 따른 성능 특성 연구 (Experimental Study on Performance Characteristics with Various Spacings between Automobile Cooling Fan and Engine Block)

  • 유병민;유기완;장재경;이강덕;홍성규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.143-149
    • /
    • 2009
  • Recently, according to the tendency to the more comfortable automobile, the improvement of performance of the cooling fan is required. The performance of cooling fan is affected by many peripheral parts, such as radiator, condenser, engine block and etc. Therefore, it is important to consider the effect of peripheral components on the fan performance in design and analysis stages. In this paper, the performance of automobile cooling fan is investigated experimentally by using the large capacity fan tester based on the ASHRAE and the AMCA standards. In particular, the various spacing between cooling fan and engine block are considered to obtain the effect of engine block. An empirical relation between the fan flow rate and the spacing was proposed.

  • PDF

엔진 블록과 냉각 팬의 간극에 따른 자동차 냉각 팬의 성능 특성 연구 (Performance Characteristics of Automobile Cooling Fan according to Gap between Engine Block and Cooling Fan)

  • 유병민;유기완;이강덕;이명한;홍성규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.92-97
    • /
    • 2009
  • The performance of cooling fan is affected by many peripheral parts, such as radiator, condenser, engine block and etc. Higher power has been requested in more confined automobile engine room. Thus, cooling performance becomes very important to remove the heat generated from the automobile engine more efficiently. In this paper, the performance of cooling fan including effects of engine block is investigated by using a fan tester based on the ASHRAE and the AMCA standards. A flow rate - gap distance curves and a flow rate - engine block constant curves are obtained from this study.

  • PDF

자동차 엔진 냉각홴의 공력 소음 예측에 관한 연구 (Aerodynamic Noise Prediction of Automobile Engine Cooling Fan Noise)

  • 이정한;조경석;선효성;신형기;이수갑
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.115-120
    • /
    • 1998
  • Aerodynamic noise generated by automobile cooling fan is investigated. Automobile cooling fans radiate both discrete frequency noise as well as broadband noise. In the present work, the former is considered through free-wake panel method coupled with acoustic analogy fully considering the retarded time variation on the blade surface, while the latter is taken into account by three well-established broadband noise components. Experiments were performed to supplement necessary inputs as well as to provide the final comparison with the predicted noise spectrum. The predicted noise levels at blade passing frequencies agree well with the experimental data for the first few harmonics. Although the predicted broadband noise levels at higher frequencies fall below the experimental data due to the fundamental shortcomings of the utilized formulations, the analysis offers a detailed physical understanding of the fan noise generation processes.

  • PDF

전산실험모형을 이용한 자동차 엔진 냉각홴의 저소음 설계 (Design of Low Noise Engine Cooling Fan for Automobile using DACE Model)

  • 심현진;박상길;조용구;오재응
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.509-515
    • /
    • 2009
  • This paper proposes an optimal design scheme to reduce the noise of the engine cooling fan by adapting Kriging with two meta-heuristic techniques. An engineering model has been developed for the prediction of the noise spectrum of the engine cooling fan. The noise of the fan is expressed as the discrete frequency noise peaks at the BPF and its harmonics and line spectrum at the broad band by noise generation mechanisms. The object of this paper is to find the optimal design for noise reduction of the engine cooling fan. We firstly show a comparison of the measured and calculated noise spectra of the fan for the validation of the noise prediction program. Orthogonal array is applied as design of experiments because it is suitable for Kriging. With these simulated data, we can estimate a correlation parameter of Kriging by solving the nonlinear problem with genetic algorithm and find an optimal level for the noise reduction of the cooling fan by optimizing Kriging estimates with simulated annealing. We notice that this optimal design scheme gives noticeable results. Therefore, an optimal design for the cooling fan is proposed by reducing the noise of its system.

전산실험모형을 이용한 자동차 엔진 냉각팬의 저소음 설계 (Design of Low Noise Engine Cooling Fan for Automobile using DACE Model)

  • 심현진;이해진;이유엽;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1307-1312
    • /
    • 2007
  • This paper proposes an optimal design scheme to reduce the noise of the engine cooling fan by adapting Kriging with two meta-heuristic techniques. An engineering model has been developed for the prediction of the noise spectrum of the engine cooling fan. The noise of the fan is expressed as the discrete frequency noise peaks at the BPF and its harmonics and line spectrum at the broad band by noise generation mechanisms. The object of this paper is to find the Optimal Design for Noise Reduction of the Engine Cooling Fan. We firstly show a comparison of the measured and calculated noise spectra of the fan for the validation of the noise prediction program. Orthogonal array is applied as design of experiments because it is suitable for Kriging. With these simulated data, we can estimate a correlation parameter of Kriging by solving the nonlinear problem with genetic algorithm and find an optimal level for the noise reduction of the cooling fan by optimizing Kriging estimates with simulated annealing. We notice that this optimal design scheme gives noticeable results. Therefore, an optimal design for the cooling fan is proposed by reducing the noise of its system.

  • PDF

SRM을 이용한 자동차용 Radiator 냉각팬 구동시스템 (Radiator Cooling Fan System by Switched Reluctance Motor for Automobiles)

  • 윤용호;김재문;박상훈;원충연
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.235-240
    • /
    • 2009
  • In automobile, the introduction of electronically commutated motors has been accompanied by a proliferation of electronic devices. With this proliferation of electronic devices, an emphasis has been placed on EMC issues. This paper is proposed to use SRM as a radiator cooling fan in automotive applications. To drive SRM, Energy efficient C-dump converter is applied. Energy efficient C-dump converter, derived from the conventional C-dump converter, is proposed as a switched reluctance motor (SRM) drive for automotive engine cooling application. It is verified more efficient than other converters through simulation and experiments. And also SRM is valid for automotive applications that have strict EMC standards. Simulation and experimental results obtained on a laboratory prototype are finally presented to evaluate the performance.

적층 복합재 팬-블레이드의 적층각도 최적화 설계 (Design of optimal fiber angles in the laminated composite fan blades)

  • 정재연;조영수;하성규
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1765-1772
    • /
    • 1997
  • The layered composites have a character to change of structure stiffness with respect to the layup angles. The deformations in the fan-blades to be initially designed by considering efficiency and noise, etc., which arise due to the pressure during the fan operation, can make the fan inefficient. Thus, so as to minimize the deformations of the blades, it is needed to increase the stiffness of the blades. An investigation has been performed to develop the three dimensional layered composite shell element with the drilling degree of freedom and the optimization module for finding optimal layup angles with sensitivity analysis. And then they have been verified. In this study, the analysis model is engine cooling fan of automobile. In order to analyzes the stiffness of the composite fan blades, finite element analysis is performed. In addition, it is linked with optimal design process, and then the optimal angles that can maximize the stiffness of the blades are found. In the optimal design process, the deformations of the blades are considered as multiobjective functions, and this results minimum bending and twisting simultaneously.