• Title/Summary/Keyword: Autometallography

Search Result 17, Processing Time 0.028 seconds

Localization and Accumulated Concentration Changes of Mercury Compound in Reproductive Organs of Female Mice with Time (암컷 마우스 생식기관 내 수은 화합물의 위치와 시간에 따른 축적된 수은 농도 변화)

  • Kim, Young Eun;Kim, Yu Seon;Cho, Hyun Wook
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.811-818
    • /
    • 2018
  • This study was performed to investigate the localization and concentration changes of mercury compound in female reproductive organs with time. Methylmercuric chloride was subcutaneously injected weekly into pubescent female mice for 3 weeks. For the concentration changes of mercury with time, the mice were sacrificed at 10, 150, and 300 days post treatment (DPT). Body and organ weights were not significantly different between the control and mercury-treated groups, except for 10 DPT in body weight. Localization of accumulated mercury was identified by the autometallography method. Localization of mercury compounds in the uterus, ovary, and ovum was analyzed with a light microscope. In the uterus, mercury was densely located in the stroma cells and surface epithelium of the perimetrium at 10 DPT. Mercury concentration was decreased at 150 DPT and did not appear at 300 DPT. In the ovary, mercury particles were distributed in the stroma cells of the cortex region, cells of the theca around the follicle, and the corpus luteum at 10 DPT. Mercury was concentrated in the medulla region at 150 DPT and was not distributed at 300 DPT. In the ovum, mercury particles were mainly located in the marginal region at 10 and 150 DPT. Mercury concentration was decreased and evenly distributed at 300 DPT. These results suggest that hormone synthesis, implantation, and developing embryos will be affected by mercury compound in the female mouse.

Ultrastructures of Zinc-containing Mast Cells Found in the Rat Hindpaw after an Inflammatory Stimuli: Zinc Selenium Autometallography (랫드 발바닥 염증부위에서 관찰된 zinc함유 비만세포의 미세구조: 조직화학적 염색을 중심으로)

  • Lee, Bo-Ye;Kim, Yi-Suk;Lee, Boeb-Y.;Lee, Hyun-Sook;Tak, Gye-Rae;Lee, Young-Il;Lee, Jeoug-Yeol;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.36 no.4
    • /
    • pp.271-277
    • /
    • 2006
  • Mast cells (MCs) are granulated cells that play a pivotal role in allergic reaction and inflammation. The granules of mast cells are known to be rich in zinc (Zn). Male Sprague-Dawley rats were used. We injected $200{\mu}L$ of complete Freund's adjuvant (CFA) subcutaneously in the dorsal aspect of one hindpaw Finally, zinc selenium autometallography(AMG) was done by Danscher's method. The present study showed the ultrastructures of zinc-containing mast cells found in inflammatory area following an complete freund's adjuvant (CFA) inoculation into the rat hindpaw. At light microscopic level, mast cells were round or oval, at average $12{\mu}m$ in diameter, with many filopodia extending from the cell surface. Because the rather small and spherical nucleus was centrally placed; it was frequently obscured by the cytoplasmic granules, it sometimes could not be seen. Mast cells were distributed chiefly in the vicinity of small blood vessels. In most preparation many mast cells were ruptured and their granules escaped into the surrounding tissue. In electron micrographs, The secretory granules were at average $0.5{\mu}m$ in diameter and were limited by a membrane. The cell surface contained numerous microvilli and folds. Their interior was heterogenous in appearance. The nucleus was surrounded by large numbers of prominent vesicels and a well developed Golgi apparatus, but scant endoplasmic reticulum.

Zinc-enriched (ZEN) Terminals in Onuf's Nucleus Innervating External Urethral Sphincter: HRP Tracing Method and Zinc Selenium Autometallography (바깥요도조임근을 지배하는 Onuf 핵에서 관찰된 Zinc 함유 신경종말: HRP 추적법 및 zinc selenium 조직화학법)

  • Lee, Bo-Ye;Kim, Yi-Suk;Lee, Boeb-Y.;Lee, Hyun-Sook;Tak, Gye-Rae;Lee, Young-Il;Lee, Jeoug-Yeol;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.36 no.4
    • /
    • pp.299-305
    • /
    • 2006
  • Onuf's nucleus, which is located in the ventral horn, has been known to innervate the striated muscles of the urethral and anal sphincter muscles via the pudendal nerve Onuf's nuclei are resistant to pathologic condition such as poliovirus. The reason why the motor neurons in Onuf's nucleus are less degenerated is not certain until now. The present study aims at updating the microscopical characteristics including its location the Onuf's nucleus innervating the external urethral sphincter, and ultrastructures of the zinc-enriched (ZEN) terminals synaptically-contacting with Onuf's motor neurons in the rat spinal gray matter by using HRP tracing method and zinc selenium autometallography, respectively. Based on HRP tracing method, Onuf's nuclei were located adjacent lateral dendritic projections of the ventral horn. Their shape was almost round at lumbar level, but oval at sacral segment of spinal cord. In size, their somata were smaller than that of other motor nuclei. In AMG stained sections, Onuf's nuclei were innervated by highly concentrated ZEN terminals, and contained small and middle-sized ZEN, but totally void of large ZEN terminals. AMG silver grains were confined to presynaptic ZEN terminals against dendritic elements and somata of the Onuf's motor neurons. A majority of the ZEN terminals contained flattened synaptic vesicles and made symmetrical synaptic specializations.

Changes in the Concentration and Localization of Accumulated Mercury in Kidney, Liver, and Spleen of Mice over Time (생쥐 신장, 간, 비장 내 시간에 따른 수은 농도 변화와 수은 화합물의 위치)

  • Kim, Yu Seon;Kim, Young Eun;Cho, Hyun Wook
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.879-887
    • /
    • 2019
  • This study investigated the localization and changes in the concentration of injected mercury in the kidney, liver, and spleen of mice. To evaluate changes in the concentration of mercury over time, the mice were euthanized 10, 150, and 300 days post-treatment. Localization of accumulated mercury was identified by the autometallography method. Mercury was densely located in the supranuclear cytoplasm of epithelial cells of proximal tubules of the kidney but was not detected in the glomerulus 10 days post-treatment. In the liver, mercury was mainly found in hepatocytes around the portal vein and in sinusoidal Kupffer cells 10 days post-treatment. Mercury was scattered throughout both white and red pulp of the spleen 10 days post-treatment. In terms of changes in the concentration of mercury, the levels were lower in the renal cortex and medulla 150 and 300 days post-treatment as compared with those 10 days post-treatment. Mercury was found at low concentrations in liver hepatocytes 150 and 300 days post-treatment. The mercury concentration was also low in both the white and red pulp of the spleen 150 and 300 days post-treatment. Therefore, the concentrations of accumulated mercury in the kidney, liver, and spleen 150 and 300 days post-treatment were lower than those 10 days post-treatment. We identified the localization of mercury in cells and tissues of several organs and observed that accumulated mercury in organs decreased naturally over time.

Histochemical and Electron Microscopic Study on the Zinc-containing Neurons in Rat Spinal Cord (흰쥐의 척수에서 아연이 함유된 신경원에 대한 조직화학 및 전자현미경적 연구)

  • Cho, Hyun-Wook;Han, Weon-Dong
    • Applied Microscopy
    • /
    • v.26 no.2
    • /
    • pp.243-252
    • /
    • 1996
  • The somata and boutons of the zinc-containing neurons in the spinal cord of the rats were labeled by intraperitoneal injection of sodium selenite and silver amplification. The labeled somata of the neurons were located in laminae V, VI, VII and X of the gray matter. The zinc selenium reaction products were retrogradely transported and precipitated into somata of the neuron with survival 8 hours. This observation suggest that all or part of the spinal cord zinc-containing neurons are interneurons. At survival 1 hour, the loaded axonal boutons with zinc precipitates of zinc-containing neurons were distributed in the gray matter and in the processes of lateral and ventral funiculi of the white matter. In particular, AMG stained boutons with huge form were appeared in the lamina IX. Ultrastructurally, the zinc precipitates were located in the cytoplasmic lysosomes or the vesicle within boutons of the zinc-containing neuron in accordance with survival times.

  • PDF

Do Paneth Cells Regulate the Zinc Body Burden? (Zinc 대사와 관련된 Paneth 세포활성의 변화에 관한 조직화학적 연구)

  • Jo, Seung-Mook;Kim, Sung-Jun;Park, Seung-Kook;Kang, Tae-Cheon;Won, Moo-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.357-365
    • /
    • 2000
  • Paneth cells have been suggested to contribute to the elimination of excess metals into the intestinal lumen. The purpose of this study wat to investigate the changes of the zinc pools in rats subjected to functional loading with zinc salt by mean of both light and electron microscopical autometallography (AMG). Wistar rats 4 were administrated with zinc chloride (20 mg/kg body weight) intraperitoneally dissolved in 1 ml distilled water. The control group received 1 ml saline IP. After further one hour the animals were transcardially perfused with 0.4% sodium sulphide dissolved in 0.1 M PB fellowed by 3% glutaraldehyde solution for 10 minutes. Pieces of ileum were frozen with solid $CO_2$ and sectioned on a cryostat. The sections $(20{\mu}m)$ were autometallographically developed. Sections selected for EM were reembedded on top of a blank Epon block, from which ultrathin sections (100 nm) were cut. The ultrathin sections were double stained with uranyl acetate (30 min) and lead citrate (5 min), then examined under electron microscope. Studies of comparable sections from control and zinc loaded animals with the AMG selenium method gave quite different results. The control animals demonstrated a weakly positive staining in the cytoplasm of the Paneth cells. In the electron microscope the AMG silver grains were found to be located in the cytoplasm, while the electron dense secretary granules and other cell organelles were void of staining. Few AMG grains were located at the apical surface of the Paneth cells. In sections from zinc loaded rats, the AMG grains were seen in abundance in the lumen of the Lieberkuhn crypts at light microscopic levels. At EM levels the zinc revealing silver grains were located in the cytoplasm as in the controls, but much more AMG grains were shifted into the secretary granules. Furthermore, profound AMG grains were found in the lumen of the crypts and surrounding vessels. And a few grains were seen in the endothelium. The AMG technique demonstrated a pattern of AMG grains in the Paneth cells that strongly suggests a transport of zinc ions through these cells.

  • PDF

Autometallography for Zinc Detection in the Central Nervous System (중추신경계통내 분포하는 Zinc의 조직화학적 동정)

  • Jo, Seung-Mook;Gorm, Danscher;Kim, Sung-Jun;Park, Seung-Kook;Kang, Tae-Cheon;Won, Moo-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 2000
  • Zinc is one of the most abundant oligoelements in the living cell. It appears tightly bound to some metalloproteins and nucleic acids, loosely bound to some metallothioneins or even as free ion. Small amounts of zinc ions (in the nanomolar range) regulate a plentitude of enzymatic proteins, receptors and transcription factors, thus rolls need accurate homeostasis of zinc ions. Zinc is an essential catalytic or structural element of many proteins, and a signaling messenger that is released by neural activity at many central excitatory synapses. Growing evidences suggest that zinc may also be a key mediator and modulator of the neuronal death associated with transient global ischemia and sustained seizures, as well as perhaps other neurological disease stoles. Some neurons have developed mechanisms to accumulate zinc in specific membrane compartment ('vesicular zinc') which can be evidenced using histochemical techniques. Substances giving a bright colour or emitting fluorescence when in contact with divalent metal ions are currently used to detect them inside cells; their use leads to the so called 'direct' methods. The fixation and precipitation of metal ions as insoluble salt precipitates, their maintenance along the histological process and, finally, their demonstration after autometallographic development are essential steps for other methods, the so called 'indirect methods'. This study is a short report on the autometallograhical approaches for zinc detection in the central nervous system (CNS) by means of a modified selenium method.

  • PDF