• Title/Summary/Keyword: Automatization

Search Result 62, Processing Time 0.015 seconds

Experimental Study for Proposal of Concrete Removal Standard using Hydrodemolition Method (Hydrodemolition에 의한 콘크리트 파쇄기준 제안을 위한 실험적 연구)

  • Jeong, Won-Kyong;Kim, Ki-Heun;Yun, Kyong-ku;Kim, Yong-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.73-80
    • /
    • 2009
  • To repair the deteriorated concrete structures, the deteriorated parts should be removed by using surface treatment methods and replaced by new construction materials. Hydrodemolition is one of the most effective methods for chipping off the deteriorated concrete and treating the remaining concrete. The water jet can remove the deteriorated concrete without damaging the reinforcement steel and surrounding aggregates. Using the water jet system improves surface texture, which ensures to improve adhesive strength between new and old concretes. In this study, three different concrete slab strengths and two water jet machine sets were investigated. Experimental results showed the relationship between concrete strength and water jet condition and this would enable to provide the information of the domestic water jet system and specification, which would contribute to automatization and efficiency of concrete repairing and rehabilitation works.

Parameter Optimization and Automation of the FLEXPART Lagrangian Particle Dispersion Model for Atmospheric Back-trajectory Analysis (공기괴 역궤적 분석을 위한 FLEXPART Lagrangian Particle Dispersion 모델의 최적화 및 자동화)

  • Kim, Jooil;Park, Sunyoung;Park, Mi-Kyung;Li, Shanlan;Kim, Jae-Yeon;Jo, Chun Ok;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • Atmospheric transport pathway of an air mass is an important constraint controlling the chemical properties of the air mass observed at a designated location. Such information could be utilized for understanding observed temporal variabilities in atmospheric concentrations of long-lived chemical compounds, of which sinks and/or sources are related particularly with natural and/or anthropogenic processes in the surface, and as well as for performing inversions to constrain the fluxes of such compounds. The Lagrangian particle dispersion model FLEXPART provides a useful tool for estimating detailed particle dispersion during atmospheric transport, a significant improvement over traditional "single-line" trajectory models that have been widely used. However, those without a modeling background seeking to create simple back-trajectory maps may find it challenging to optimize FLEXPART for their needs. In this study, we explain how to set up, operate, and optimize FLEXPART for back-trajectory analysis, and also provide automatization programs based on the open-source R language. Discussions include setting up an "AVAILABLE" file (directory of input meteorological fields stored on the computer), creating C-shell scripts for initiating FLEXPART runs and storing the output in directories designated by date, as wells as processing the FLEXPART output to create figures for a back-trajectory "footprint" (potential emission sensitivity within the boundary layer). Step by step instructions are explained for an example case of calculating back trajectories derived for Anmyeon-do, Korea for January 2011. One application is also demonstrated in interpreting observed variabilities in atmospheric $CO_2$ concentration at Anmyeon-do during this period. Back-trajectory modeling information introduced in this study should facilitate the creation and automation of most common back-trajectory calculation needs in atmospheric research.