• Title/Summary/Keyword: Automation & Robot technology

Search Result 208, Processing Time 0.027 seconds

A Study on Kinematics and Dynamics Analysis of Vertical Articulated Robot with 6 axies for Forging Process Automation in High Temperatures Environments (고온 환경 단조 공정자동화를 위한 6축 수직다관절 로봇의 기구학 및 동특성 해석에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Koo, Young-Mok;Won, Jong-Beom;Kang, Jeong-Seok;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • In general, articulated robot control technology is limited to the design of robot arm control systems considering each joint of the robot joint as a simple servomechanism. This method describes the varying dynamics of a manipulator inadequately because it neglects the motion and configuration of the whole arm mechanism. The changes of the parameters in the controlled system are significant enough to render conventional feedback control strategies ineffective. This basic control system enables a manipulator to perform simple positioning tasks such as in the pock and place operation. However, joint controllers are severely limited in precise tracking of fast trajectories and sustaining desirable dynamic performance for variations of payload and parameter uncertainties. In many servo control applications the linear control scheme proposes unsatisfactory, therefore, a need for nonlinear techniques that increasing. for Forging process automation.

A Research to realize a smart logistics warehouse system using 5G-based Logistics Automation Robot (5G 기반 물류 자동화 로봇을 활용한 스마트 물류 창고 시스템 구현을 위한 연구)

  • Park, Tae-uk;Yoon, Mahn-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.532-534
    • /
    • 2022
  • At a time when the 5G era is advancing beyond commercialization, places that used to handle simple logistics warehouse tasks are transforming into smart logistics warehouses by combining IT convergence technology and platforms. Smart logistics warehouses can accurately predict demand and inventory of products with AI, deep learning, and robot technologies based on 5G, and provide information on warehousing and warehousing status in real time. As the e-commerce market grows, the smart logistics sector is also growing rapidly. This paper implements a smart logistics warehouse system and studies and proposes a method of establishing a fast and accurate logistics system by utilizing 5G-based Logistics Automation Robot.

  • PDF

3D scanner's measurement path establishment automation by robot simulator

  • Jang, Pyung-Su;Lee, Sang-Heon;Chang, Min-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2179-2182
    • /
    • 2005
  • Recently, optical 3D scanners are frequently used for inspection of parts, assembly and manufacturing tooling. One of the advantages is being able to measure a large area fast and accurately. Owing to recent advances in high-resolution image sensing technology, high power illumination technology, and high speed microprocessors, the accuracy and resolution of optical 3D scanners are being improved rapidly. In order to measure the entire geometry of objects, multiple scans have to be performed in various setups by moving either the objects or the scanner. This paper introduces novel methods to measure the entire geometry of objects by automatically changing the setups and then aligning the scanned data in a single coordinate system.

  • PDF

Development of High-rise building Maintenance Robot System through Construction Automation based on the 4th Industrial Revolution (4차산업혁명기반 건설자동화를 통한 초고층 건축물 유지관리 로봇시스템 개발)

  • Kim, Jihun;Woo, Miso;Lee, Dongoun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.18-19
    • /
    • 2020
  • Domestic and foreign high-rise buildings are expected to continue to increase in the future. In addition, recently, residents and landlords are demanding maintenance necessary to secure the performance of sustainable buildings, so an effective management plan is needed. Therefore, this study aims to develop customized technologies that can be effectively applied to building structures by comprehensively analyzing existing technology-based research cases. As a result, it is expected that this will serve as a stepping stone to present a s+ample of future technology development along with a reduction in labor dependency on maintenance and quality improvement.

  • PDF

Performance Evaluation of Concrete Polishing Robot with Omnidirectional Mobile Mechanism (전방향 이동 메커니즘을 적용한 콘크리트 폴리싱 로봇의 성능평가)

  • Cho, Gangik;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.112-117
    • /
    • 2016
  • In the construction industry, concrete polishing is used to grind and rub the surface of concrete grounds with polishing machines to increase the strength of the concrete after deposition. Polishing is performed manually in spite of the generation of dust and the requirement of frequent replacements of the polishing pad. The concrete polishing robot developed in this research is a novel polishing automation system for preventing the workers from being exposed to poor working environments. This robot is able to change multiple polishing tools automatically; however, the workers can conveniently replace the worn-out polishing pads with new ones. The mobile platform of the polishing robot employs omnidirectional wheels to enable a flexible motion even in small and complicated workspaces. To evaluate the performance of the developed concrete polishing robot, extensive experiments including square trajectory tracking, automatic tool changing, actual polishing, and path generation simulation were performed.

A Technology of Obstacle Avoidance of Mobile Robot (이동로봇의 장애물 회피기술)

  • Oh, Se-Bong;Han, Sung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.132-145
    • /
    • 2008
  • We propose a new technique for autonomous navigation and travelling of mobile robot based on ultrasonic sensors through the narrow labyrinth that leave only distance of a few centimeters on each side between the guides and the robot. In our current implementation the ultrasonic sensor system fires at a rate of 100 ms, that is, each of the 8 sensors fires once during each 100 ms interval. This is a very good firing rate, implemented here for optimal performance. This paper presents an extensively tested and verified solution to the problem of obstacle avoidance. Our solution is based on the optimal placement of ultrasonic sensors at strategic locations around the robot. Both the sensor location and the associated navigation algorithm are defined in such a way that only the accurate radial sonar data is used for accurate travelling.

Development of BioRobot System Based on Mobile Agent for Clinical Laboratory (임상병리검사를 위한 모바일 에이전트 기반의 바이오로봇 시스템 개발)

  • Choi, Byung-June;Jin, Sung-Moon;Sin, Seung-Hun;Koo, Ja-Choon;Kim, Min-Chul;Kim, Jin-Hyun;Son, Woong-Hee;Ahn, Ki-Tak;Chung, Wan-Kyun;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.317-326
    • /
    • 2007
  • Recently, robotic automation in clinical laboratory becomes of keen interest as a fusion of bio and robotic technology. In this paper, we present a new robotic platform for clinical tests suitable for small or medium sized laboratories using mobile robots. The mobile robot called Mobile Agent is designed as transfer system of blood samples, reagents, microplates, and any instruments. Also, the developed mobile agent can perform diverse tests simultaneously based on its cooperative and distributed ability. The driving circuits for the mobile agent are embedded in the robot, and each mobile agent communicates with other agents by using Bluetooth communication. The RFID system is used to recognize patient information. Also, the magnetic hall sensor is embedded to remove and compensate the cumulated error of locomotion at the bottom of mobile agent. The proposed mobile agent can be easily used for various applications because it is designed to be compatible with general software development tools. The Mobile agents are manufactured, and feasibility of the robot and localization of the agents using magnetic hall sensor are validated by preliminary experiments.

  • PDF

F/T sensor application for robotic deburring

  • Park, Jong-Oh;Lee, Heck-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1677-1680
    • /
    • 1991
  • Machining is a bottleneck in robot application technologies because of uncertainty of position/form, poor reliability of robot function and low reaction speed of robot to changes of surroundings, But in grinding automation with relatively low machining speed it is feasible to integrate of sensor signal in machining. In this paper strategy for robotic grinding with F/T sensor will be presented and with that the experimental results will be discussed. F/T sensor signal in grinding of strategy weld seam are transferred to PC, which plays a role as cell computer and transform F/T data to robot position and/or orientation, speed correction data according to programmed algorithm. The possibility and boundary of robotic grinding with F/T sensor intergration is discussed.

  • PDF

A Study on the Sensor Fusion Method to Improve Localization of a Mobile Robot (이동로봇의 위치추정 성능개선을 위한 센서융합기법에 관한 연구)

  • Jang, Chul-Woong;Jung, Ki-Ho;Kong, Jung-Shik;Jang, Mun-Suk;Kwon, Oh-Sang;Lee, Eung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.317-318
    • /
    • 2007
  • One of the important factors of the autonomous mobile robot is to build a map for surround environment and estimate its localization. This paper suggests a sensor fusion method of laser range finder and monocular vision sensor for the simultaneous localization and map building. The robot observes the comer points in the environment as features using the laser range finder, and extracts the SIFT algorithm with the monocular vision sensor. We verify the improved localization performance of the mobile robot from the experiment.

  • PDF

Gantry Robot with Extended Workspace for Pavement Sign Painting Operations

  • Hong Daehie;Lee Woo-Chang;Chu Baeksuk;Kim Tae-Hyung;Choi Woo Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1268-1279
    • /
    • 2005
  • The current method for pavement sign marking operations is labor-intensive and very dangerous due to the exposure of workers to passing traffic. It also requires blocking traffic for a long period of time resulting serious traffic jam. This paper deals with the development of a robotic system for automating the pavement sign painting operations. The robotic system consists of gantry frame equipped with transverse drive rail and automatic paint spray system. The workspace of the gantry robot is extended to one-lane width with the transverse rail system. This research also includes the development of font data structures that contain the shape information of pavement signs, such as Korean letters, English letters and symbols. The robot path is generated with this font data through the procedures of scaling up/down and partitioning the signs to be painted depending on the workspace size.