• 제목/요약/키워드: Automatic weather station

Search Result 135, Processing Time 0.028 seconds

Comparison of the Weather Station Networks Used for the Estimation of the Cultivar Parameters of the CERES-Rice Model in Korea (CERES-Rice 모형의 품종 모수 추정을 위한 국내 기상관측망 비교)

  • Hyun, Shinwoo;Kim, Tae Kyung;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.2
    • /
    • pp.122-133
    • /
    • 2021
  • Cultivar parameter calibration can be affected by the reliability of the input data to a crop growth model. In South Korea, two sets of weather stations, which are included in the automated synoptic observing system (ASOS) or the automatic weather system (AWS), are available for preparation of the weather input data. The objectives of this study were to estimate the cultivar parameter using those sets of weather data and to compare the uncertainty of these parameters. The cultivar parameters of CERES-Rice model for Shindongjin cultivar was calibrated using the weather data measured at the weather stations included in either ASO S or AWS. The observation data of crop growth and management at the experiment farms were retrieved from the report of new cultivar development and research published by Rural Development Administration. The weather stations were chosen to be the nearest neighbor to the experiment farms where crop data were collected. The Generalized Likelihood Uncertainty Estimation (GLUE) method was used to calibrate the cultivar parameters for 100 times, which resulted in the distribution of parameter values. O n average, the errors of the heading date decreased by one day when the weather input data were obtained from the weather stations included in AWS compared with ASO S. In particular, reduction of the estimation error was observed even when the distance between the experiment farm and the ASOS stations was about 15 km. These results suggest that the use of the AWS stations would improve the reliability and applicability of the crop growth models for decision support as well as parameter calibration.

Development of Virtual Ambient Weather Measurement System for the Smart Greenhouse (스마트온실을 위한 가상 외부기상측정시스템 개발)

  • Han, Sae-Ron;Lee, Jae-Su;Hong, Young-Ki;Kim, Gook-Hwan;Kim, Sung-Ki;Kim, Sang-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.5
    • /
    • pp.471-479
    • /
    • 2015
  • This study was conducted to make use of Korea Meteorological Administration(KMA)'s Automatic Weather Station(AWS) data to operate smart green greenhouse. A Web-based KMA AWS data receiving system using JAVA and APM_SETUP 8 on windows 7 platform was developed. The system was composed of server and client. The server program was developed by a Java application to receive weather data from the KMA every 30 minutes and to send the weather data to smart greenhouse. The client program was developed by a Java applets to receive the KMA AWS data from the server every 30 minutes through communicating with the server so that smart greenhouse could recognize the KMA AWS data as the ambient weather information. This system was evaluated by comparing with local weather data measured by Inc. Ezfarm. In case of ambient air temperature, it showed some difference between virtual data and measured data. But, the average absolute deviation of the difference has a little difference as less than 2.24℃. Therefore, the virtual weather data of the developed system was considered available as the ambient weather information of the smart greenhouse.

A Study on Heavy Rainfall Guidance Realized with the Aid of Neuro-Fuzzy and SVR Algorithm Using AWS Data (AWS자료 기반 SVR과 뉴로-퍼지 알고리즘 구현 호우주의보 가이던스 연구)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Yong-Hyuk;Lee, Yong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.526-533
    • /
    • 2014
  • In this study, we introduce design methodology to develop a guidance for issuing heavy rainfall warning by using both RBFNNs(Radial basis function neural networks) and SVR(Support vector regression) model, and then carry out the comparative studies between two pattern classifiers. Individual classifiers are designed as architecture realized with the aid of optimization and pre-processing algorithm. Because the predictive performance of the existing heavy rainfall forecast system is commonly affected from diverse processing techniques of meteorological data, under-sampling method as the pre-processing method of input data is used, and also data discretization and feature extraction method for SVR and FCM clustering and PSO method for RBFNNs are exploited respectively. The observed data, AWS(Automatic weather wtation), supplied from KMA(korea meteorological administration), is used for training and testing of the proposed classifiers. The proposed classifiers offer the related information to issue a heavy rain warning in advance before 1 to 3 hours by using the selected meteorological data and the cumulated precipitation amount accumulated for 1 to 12 hours from AWS data. For performance evaluation of each classifier, ETS(Equitable Threat Score) method is used as standard verification method for predictive ability. Through the comparative studies of two classifiers, neuro-fuzzy method is effectively used for improved performance and to show stable predictive result of guidance to issue heavy rainfall warning.

Adjustment of the Mean Field Rainfall Bias by Clustering Technique (레이더 자료의 군집화를 통한 Mean Field Rainfall Bias의 보정)

  • Kim, Young-Il;Kim, Tae-Soon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.659-671
    • /
    • 2009
  • Fuzzy c-means clustering technique is applied to improve the accuracy of G/R ratio used for rainfall estimation by radar reflectivity. G/R ratio is computed by the ground rainfall records at AWS(Automatic Weather System) sites to the radar estimated rainfall from the reflectivity of Kwangduck Mt. radar station with 100km effective range. G/R ratio is calculated by two methods: the first one uses a single G/R ratio for the entire effective range and the other two different G/R ratio for two regions that is formed by clustering analysis, and absolute relative error and root mean squared error are employed for evaluating the accuracy of radar rainfall estimation from two G/R ratios. As a result, the radar rainfall estimated by two different G/R ratio from clustering analysis is more accurate than that by a single G/R ratio for the entire range.

Study on the Subway Platform Thermal Environment for using Natural Energy (자연에너지 활용을 위한 지하철 승강장 열환경에 관한 연구)

  • KIM, Hoe-Ryul;KIM, Dong-Gyu;KUM, Jong-Soo;CHUNG, Yong-Hyun;PARK, Sung-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.269-277
    • /
    • 2009
  • Ventilation equipment performs a central role to maintain comfort subway environment. So ventilation equipment of Busan subway line No.1 is required to improve thermal environment. In this study, conditions of thermal environment are presented to improve ventilation equipment at existing subway station platforms by measuring thermal environment of platforms operated ventilation equipment at 14 stations of Busan subway line No.1. AWS of data in comparison with the neighbouring platforms and thermal environment analysis. Thermal environment status of subway platform analysis results are as follows. 1)Daytime platform temperature was higher than outdoor temperature, but night time platform temperature was lower than outdoor temperature. 2)Train wind had effect on improving thermal comfort in platform. 3)When outdoor temperature is below $24^{\circ}C$, inlet air is able to lower than platform temperature. 4)Considering existing ventilation system, night purge systems is useful to improving platform thermal environment.

Classification of Convective/Stratiform Radar Echoes over a Summer Monsoon Front, and Their Optimal Use with TRMM PR Data

  • Oh, Hyun-Mi;Heo, Ki-Young;Ha, Kyung-Ja
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.465-474
    • /
    • 2009
  • Convective/stratiform radar echo classification schemes by Steiner et al. (1995) and Biggerstaff and Listemaa (2000) are examined on a monsoonal front during the summer monsoon-Changma period, which is organized as a cloud cluster with mesoscale convective complex. Target radar is S-band with wavelength of 10cm, spatial resolution of 1km, elevation angle interval of 0.5-1.0 degree, and minimum elevation angle of 0.19 degree at Jindo over the Korean Peninsula. For verification of rainfall amount retrieved from the echo classification, ground-based rain gauge observations (Automatic Weather Stations) are examined, converting the radar echo grid data to the station values using the inverse distance weighted method. Improvement from the echo classification is evaluated based on the correlation coefficient and the scattered diagram. Additionally, an optimal use method was designed to produce combined rainfalls from the radar echo and Tropical Rainfall Measuring Mission Precipitation Radar (TRMM/PR) data. Optimal values for the radar rain and TRMM/PR rain are inversely weighted according to the error variance statistics for each single station. It is noted how the rainfall distribution during the summer monsoon frontal system is improved from the classification of convective/stratiform echo and the use of the optimal use technique.

Composite technique development of rain rate by using COMS and microwave satellite (통신해양기상위성 및 마이크로웨이브자료를 이용한 강수량합성기술개발.활용)

  • Suh, Ae-Sook;Park, Jong-Seo;Kim, Do-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.259-263
    • /
    • 2008
  • 최근 기후변화로 인해 집중호우, 태풍, 폭설 등 악기상 발생이 빈번해지고 있으며, 특히 태풍은 단일 기상현상 가운데 가장 강력하며, 태풍으로 인하여 집중호우 폭풍 및 해일 등 부차적 악기상이 함께 발생하여 인명 및 경제 사회적인 피해 또한 막대하지만, 태풍으로 인한 강수량 측정은 다른 현상에 비해 정확한 측정이 어렵다. 이것은 태풍이 발생에서 소멸까지 일생의 대부분을 해상에서 보내, 육상 관측으로는 정확한 강수량 측정이 어렵기 때문이다. 그러나 위성자료를 활용하면 해상에서의 태풍 구름에 의한 강수분포를 추정할 수 있으며, 특히 구름을 투과하여 아래 내부구조 파악이 가능한 마이크로파 영역의 적외복사에너지를 이용하면 좀더 정확한 강수량 자료를 얻을 수 있을 것이다. 그러나 관측영역 확대를 위해서는 가능한 마이크로파위성자료를 합성처리하여 활용하는 것이 효과를 얻을 수 있을 것이다. 본 연구에서는 현재 기상청에서 수신하고 있는 Aqua/AMSR-E, SSM/I, TMI, QuilSCAT 등에서 산출되는 강수량을 상호 검증기법을 이용하여 합성처리 하였다. 위성자료마다 정확도와 해상도가 다른 것에 대해서는 높은 정확도에 가중치를 주고, 고해상도 자료에 맞추어 픽셀 크기를 맞추었다. 사용한 자료는 2005년$\sim$2007년 간 발생한 태풍 중에서 우리나라에 영향을 준 나비, 나리, 에위니아 등 3개 사례이며, 검증은 자동관측자료(AWS : Automatic Weather Station)자료와 일본 AWS자료(AMEDAS : Automatic Measurement Data Aquisition System) 및 미해군 연구소 발표자료를 이용하여, 시계열오차 분석 및 산포도를 분석하였다.

  • PDF

Tropospheric Anomaly Detection in Multi-reference Stations Environment during Localized Atmosphere Conditions-(1) : Basic Concept of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.265-270
    • /
    • 2016
  • Extreme tropospheric anomalies such as typhoons or regional torrential rain can degrade positioning accuracy of the GPS signal. It becomes one of the main error terms affecting high-precision positioning solutions in network RTK. This paper proposed a detection algorithm to be used during atmospheric anomalies in order to detect the tropospheric irregularities that can degrade the quality of correction data due to network errors caused by inhomogeneous atmospheric conditions between multi-reference stations. It uses an atmospheric grid that consists of four meteorological stations and estimates the troposphere zenith total delay difference at a low performance point in an atmospheric grid. AWS (automatic weather station) meteorological data can be applied to the proposed tropospheric anomaly detection algorithm when there are different atmospheric conditions between the stations. The concept of probability density distribution of the delta troposphere slant delay was proposed for the threshold determination.

Development of Medium and Long-Range Atmospheric Diffusion Modeling System for Emergency Responses (비상 대응을 위한 중$\cdot$장거리 대기 확산 모형의 개발)

  • 김동영;전영신;이영복;오성남;정효상
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.147-148
    • /
    • 1999
  • 대기 화산 모형은 유독 화학 물질이나 방사능 물질 누출 사고시, 방재 대응에 매우 중요한 도구로 사용될 수 있다. 이런 목적을 위해 미국, 유럽 등에서는 1980년을 전후하여 모형 체계 개발에 착수하였고, 현재는 실용화되어 현업에서 운용되고 있다(Lee, et. al, 1997; J. Ehrhardt, 1998). 국내에서는 원자력 안전 기술원을 중심으로 원자력 발전소 주변 반경 십여 km지역에 위치한 기상청의 자동 종합 기상 측정 장치(AWS, Automatic Weather Station)의 실측 바람장을 기반으로 확산 예측을 수행할 수 있는 시스템을 운용하고 있다(원자력안전기술원, 1999).(중략)

  • PDF

The Prediction of the location and electric Power for Small Wind Powers in the H University Campus (대학교 캠퍼스 소형풍력발전기 설치 및 발전량 예측에 관한 연구)

  • Cho, Kwan Haeng;Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.127-132
    • /
    • 2012
  • The energy consumption in the world is growing rapidly. And the environmental issues of climate become a important task. The interest in renewable energy like wind and solar is increasing now. Especially, by reducing power transmission loss, a small wind power is getting attention at the residential areas and campus of university. In this study, we attempted to estimate and compare the wind energy density using wind data of AWS (Automatic Weather Station) of H University. In this case of a campus, the weibull distribution parameter C is 2.27, and K is 0.88. According to the data, the energy density of the small wind power is 12.7 W/m2. We did CFD(Computational Fluid Dynamics) simulations at H University campus by 7 wind directions(ENE, ESE, SE, NW, WNW, W, WSW). In the results, we suggest 4 small wind powers. The small wind power generating system can produce 4,514kWh annually.