• Title/Summary/Keyword: Automatic wave detection

Search Result 54, Processing Time 0.024 seconds

Automated algorithm of automated auditory brainstem response for neonates (신생아 청성뇌간 반응의 자동 판독 알고리즘)

  • Jung, Won-Hyuk;Hong, Hyun-Ki;Nam, Ki-Chang;Cha, Eun-Jong;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.100-107
    • /
    • 2007
  • AABR(automated auditory brainstem response) test is used for the screening purpose of hearing ability of neonates. In this paper, algorithm using Rolle's theorem is suggested for automatic detection of the ensemble averaged ABR waveform. The ABR waveforms were recorded from 55 normal-hearing ears of neonates at screening levels varying from 30 to 60 dBnHL. Recorded signals were analyzed by expert audiologist and by the proposed algorithm. The results showed that the proposed algorithm correctly identified latencies of the major ABR waves (III, V) with latent difference below 0.2 ms. No significant differences were found between the two methods. We also analyzed the ABR signals using derivative algorithm and compared the results with proposed algorithm. The number of detected candidate waves using the proposed algorithm was 47 % less than that of the existing one. The proposed method had lower relative errors (0.01 % error at 60dBnHL) compared to the existing one. By using proposed algorithm, clinicians can detect and label waves III and V more objectively and quantitatively than the manual detection method.

Detection of Abnormal Heartbeat using Hierarchical Qassification in ECG (계층구조적 분류모델을 이용한 심전도에서의 비정상 비트 검출)

  • Lee, Do-Hoon;Cho, Baek-Hwan;Park, Kwan-Soo;Song, Soo-Hwa;Lee, Jong-Shill;Chee, Young-Joon;Kim, In-Young;Kim, Sun-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.466-476
    • /
    • 2008
  • The more people use ambulatory electrocardiogram(ECG) for arrhythmia detection, the more researchers report the automatic classification algorithms. Most of the previous studies don't consider the un-balanced data distribution. Even in patients, there are much more normal beats than abnormal beats among the data from 24 hours. To solve this problem, the hierarchical classification using 21 features was adopted for arrhythmia abnormal beat detection. The features include R-R intervals and data to describe the morphology of the wave. To validate the algorithm, 44 non-pacemaker recordings from physionet were used. The hierarchical classification model with 2 stages on domain knowledge was constructed. Using our suggested method, we could improve the performance in abnormal beat classification from the conventional multi-class classification method. In conclusion, the domain knowledge based hierarchical classification is useful to the ECG beat classification with unbalanced data distribution.

Signal-Averaged P Wave Analysis in Patients with Paroxysmal Atrial Fibrillation (발작성 심방세동 환자의 신호평균 P파 분석)

  • 김인영;이종연;이병채;이용희;이종민;김선일;김준수
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Atrial fibrillation(AF). chronic or paroxysmal is the most frequent arrhythmia in human subjects Duration of P wave in signal-averaged electrocardiography(SAECG) reflects intra-atrial conduction time and therefore. could be used as an electrophysiological marker for atrial conduction chance at the earthy stave. So we apply the analysis method using SAECG to diagnose Paroxysmal atrial fibrillation(PAF) . Subjects Participated for the study consisted of two groups: a control group(n=34) of normal healthy volunteers and a group of AF Patients(n=38) with a documented history of PAF but no other history of cardiac disease. We evaluated the effect of several filtering and determination methods to find the starting and ending feints of the P wavy on its duration. To increase the measurement reliability of P wave duration. the automatic detection method was proposed. Also. to increase the detection rate for PAF risk, the decision threshold value was optimized using receiver operation characteristics(ROC) curve. Results showed that the highest statistical difference (p〈0.001) of the P wane duration between controls and subjects was obtained at the Processing condition, using absolute threshold vague(8.75 $\mu N$) , a least mean square(LMS) high pass filter and 30 Hz cutoff frequency. The most outstanding difference(sensitivity 88 % specificity 64.4 %) between controls and subjects was obtained at the decision threshold value of 112 ms.

Automatic Detection and Analysis of Rip Currents at Haeundae Beach using X-band Marine Radar (항해용 X-band 레이다를 이용한 해운대해수욕장 이안류 자동탐지 및 특성 분석)

  • Oh, Chanyeong;Ahn, Kyungmo;Cheon, Se-Hyeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.485-492
    • /
    • 2019
  • The observation system has been developed to investigate the rip currents at Haeundae beach using X-band marine radar. X-band radar system can observe shape, size, and velocity of rip currents, which is difficult to obtain through field observation by conventional device. Algorithms which automatically detect locations, shapes, and magnitudes of rip currents were developed using time averaged X-band radar sea clutter images. X-band sea clutter images are transformed through 3D FFT into 2D wave number spectrum and frequency spectrum. Rip current velocities were estimated using differences in wave-number spectra and wave frequency spectra due to Doppler shift. The algorithm was verified by drift experiments. At Haeundae beach, the radar system exactly located the rip currents and found to be sustained for 1-2 days at fixed locations.

Automatic Premature Ventricular Contraction Detection Using NEWFM (NEWFM을 이용한 자동 조기심실수축 탐지)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.378-382
    • /
    • 2006
  • This paper presents an approach to detect premature ventricular contractions(PVC) using the neural network with weighted fuzzy membership functions(NEWFM). NEWFM classifies normal and PVC beats by the trained weighted fuzzy membership functions using wavelet transformed coefficients extracted from the MIT-BIH PVC database. The two most important coefficients are selected by the non-overlap area distribution measurement method to minimize the classification rules that show PVC classification rate of 99.90%. By Presenting locations of the extracted two coefficients based on the R wave location, it is shown that PVC can be detected using only information of the two portions.

A Study on the Recognition of Human Pulse Using Wavelet Transform (웨이브렛 변환을 이용한 맥파의 인식에 관한 연구)

  • 길세기;김낙환;박승환;민홍기;흥승홍
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.269-272
    • /
    • 2000
  • It is need to develop and apply a human pulse diagnosis system providing a quantitative and automatic analysis in the the oriental medicine. In order to analyze quantitatively the characteristic of pulsation, each of points had to be recognized accurately notifying the existence and the position of feature point in the wave form. And getting the period of human pulse. Thus, in this paper, it is proposed the preprocessing method of human pulse and the detection method of period by Wavelet Transformation. The human pulse is seprated from each band through Wavelet Transformation and feature points can be recognized through over the fact, and then the parameter of proposed Mac-Jin parameter is measured. Commonly, Human pulse signal has often various noises which are baseline drift, high frequency noise and so on. So it is significant to remove that noises. Thus, in this paper, the one period of human pulse is deciede and the feature points are detected after doing the preprocessing by wavelet transformation. As a result, it could be confirmed that this method is effective as a real program for the auto-diagnosis of human pulse.

  • PDF

Ship Monitoring around the Ieodo Ocean Research Station Using FMCW Radar and AIS: November 23-30, 2013

  • Kim, Tae-Ho;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.45-56
    • /
    • 2022
  • The Ieodo Ocean Research Station (IORS) lies between the exclusive economic zone (EEZ) boundaries of Korea, Japan, and China. The geographical positioning of the IORS makes it ideal for monitoring ships in the area. In this study, we introduce ship monitoring results by Automatic Identification System (AIS) and the Broadband 3GTM radar, which has been developed for use in small ships using the Frequency Modulated Continuous Wave (FMCW) technique. AIS and FMCW radar data were collected at IORS from November 23th to 30th, 2013. The acquired FMCW radar data was converted to 2-D binary image format over pre-processing, including the internal and external noise filtering. The ship positions detected by FMCW radar images were passed into a tracking algorithm. We then compared the detection and tracking results from FMCW radar with AIS information and found that they were relatively well matched. Tracking performance is especially good when ships are across from each other. The results also show good monitoring capability for small fishing ships, even those not equipped with AIS or with a dysfunctional AIS.

APPLICATION OF HF COASTAL OCEAN RADAR TO TSUNAMI OBSERVATIONS

  • Heron, Mal;Prytz, Arnstein;Heron, Scott;Helzel, Thomas;Schlick, Thomas;Greenslade, Diana;Schulz, Eric
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.34-37
    • /
    • 2006
  • When tsunami waves propagate across open ocean they are steered by Coriolis force and refraction due to gentle gradients in the bathymetry on scales longer than the wavelength. When the wave encounters steep gradients at the edges of continental shelves and at the coast, the wave becomes non-linear and conservation of momentum produces squirts of surface current at the head of submerged canyons and in coastal bays. HF coastal ocean radar is well-conditioned to observe the current bursts at the edge of the continental shelf and give a warning of 40 minutes to 2 hours when the shelf is 50-200km wide. The period of tsunami waves is invariant over changes in bathymetry and is in the range 2-30 minutes. Wavelengths for tsunamis (in 500-3000 m depth) are in the range 8.5 to over 200 km and on a shelf where the depth is about 50 m (as in the Great Barrier Reef) the wavelengths are in the range 2.5 - 30 km. It is shown that the phased array HF ocean surface radar being deployed in the Great Barrier Reef (GBR) and operating in a routine way for mapping surface currents, can resolve surface current squirts from tsunamis in the wave period range 20-30 minutes and in the wavelength range greater than about 6 km. There is a trade-off between resolution of surface current speed and time resolution. If the radar is actively managed with automatic intervention during a tsunami alert period (triggered from the global seismic network) then it is estimated that the time resolution of the GBR radar may be reduced to about 2 minutes, which corresponds to a capability to detect tsunamis at the shelf edge in the period range 5-30 minutes. It is estimated that the lower limit of squirt velocity detection at the shelf edge would correspond to a tsunami with water elevation of less than 5 cm in the open ocean. This means that the GBR HF radar is well-conditioned for use as a monitor of small and medium scale tsunamis, and has the potential to contribute to the understanding of tsunami genesis research.

  • PDF

Swell Effect Correction of Sub-bottom Profiler Data with Weak Sea Bottom Signal (해저면 신호가 약한 천부해저지층 탐사자료의 너울영향 보정)

  • Lee, Ho-Young;Koo, Nam-Hyung;Kim, Wonsik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun;Son, Woohyun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.181-196
    • /
    • 2015
  • A 3.5 kHz or chirp sub-bottom profiling survey is widely used in the marine geological and engineering purpose exploration. However, swells in the sea degrade the quality of the survey data. The horizontal continuity of profiler data can be enhanced and the quality can be improved by correcting the influence of the swell. Accurate detection of sea bottom location is important in correcting the swell effect. In this study, we tried to pick sea bottom locations by finding the position of crossing a threshold of the maximum value for the raw data and transformed data of envelope or energy ratio. However, in case of the low-quality data where the sea bottom signals are not clear due to sea wave noise, automatic sea bottom detection at the individual traces was not successful. We corrected the mispicks for the low quality data and obtained satisfactory results by picking a sea bottom within a range considering the previous average of sea bottom, and excluding unreliable big-difference picks. In case of trace by trace picking, fewest mispicks were found when using energy ratio data. In case of picking considering the previous average, the correction result was relatively satisfactory when using raw data.

A ECG Analysis with Activity Monitrong for Healthcare of Elderly Person (노인 헬스케어를 위한 ECG분석 및 활동량 모니터링 구현)

  • Bhardwaj, Sachin;Purwar, Amit;Lee, Dae-Seok;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.347-350
    • /
    • 2007
  • An ECG analysis with activity monitoring for the home care of elderly persons or patients, using wireless sensors technology was design and implemented. The changes in heart rate occur before, during, or following behavior such as posture changes, walking and running. Therefore, it is often very important to record heart rate along with posture and behavior, for continuously monitoring a patient's cardiovascular regulatory system during their daily life activity. The ECG and accelerometer data are continuously recorded with a built-in automatic alarm detection system, for giving early alarm signals even if the patient is unconscious or unaware of cardiac arrhythmias. The hardware allows data to be transmitted wirelessly from on-body sensors to a base station attached to server PC using IEEE802.15.4. If any abnormality un at server then the alarm condition sends to the doctor' PDA (Personal Digital Assistant).

  • PDF