• Title/Summary/Keyword: Automatic recharging system

Search Result 3, Processing Time 0.029 seconds

Development of Multi-Material DLP 3D Printer (다중재료 DLP 3차원 프린터의 개발)

  • Park, Se-Won;Jung, Min-Woo;Son, Yong-Un;Kang, Tae-Young;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.100-107
    • /
    • 2017
  • 3D printing is a technology that converts a computer-generated 3D model into a real object with additive manufacturing technology. A majority of 3D printing technologies uses one material, and this is considered a limitation. In this study, we developed a multi-material 3D printer by adopting dual resin vat and cleaning system with DLP (Digital Light Processing) 3D printing technology. The developed multi-material DLP 3D printer is composed of a manufacturing system, cleaning system, transporting system, and automatic resin recharging system. Various 3D structures were 3D printed with two materials, thus demonstrating the potential. Printing performance of the multi-material DLP 3D printer was studied by performing a comparative surface roughness test and tension test on specimens composed of one material as well as those composed of two materials.

A Study on the Simulator and Trouble Prediction Monitoring Methodology of the Automotive Air Conditioner (자동차 공조기의 시뮬레이터 및 고장예측 모니터링 기술에 관한 연구)

  • Son, Il-Moon;Kwak, Hyo-Yean
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1568-1575
    • /
    • 2013
  • There has been an increasing interest in the market of vehicle maintenance and repair equipments to decrease air pollution. However, most of the existing air conditioning system equipment in Korea have poor performance as well as non-protection against air pollution. The purpose of this paper is to develop the monitoring technology of recovering and recharging refrigerant for air conditioning system, and also to develop its related diagnostic system. This technology and system can supply the exact amount of refrigerant from the charger to the air conditioning system by precisely diagnosing and monitoring their statuses. This technology can also control recovering and recharging of refrigerant exactly by altering the recovering pressures of refrigerant according to circumstance temperatures.

Development of a Simple Autonomous Vehicle for Greenhouse Works (온실용 간이 자율주행 작업차의 개발)

  • 이재환;류관희
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.422-428
    • /
    • 1996
  • This study was conducted to developed to develop a simple battery-powered autonomous vehicle for greenhouse works. A steering method using speed difference of two independent driving motors was adopted. DC motor driving circuit, speed control circuit and controller using one-chip microcomputer were constructed. The inputs of controller are rolling of the vehicle and current speed of driving motors. Using these signals, automatic guidance system along furrow was developed. A computer simulation program by the kenematic analysis was developed to find out optimal control algorithm. The results of this study are as follows. 1. Automatic guidance system along the furrow that adopted two independent driving motors and rolling of vehicle was developed. 2. The results of simulation showed that PID control was adequate to automatic guidance system along furrow. 3. Two commercial 12V battery serially connected were able to drive the vehicle on the soil ground for five hours in continuous operation and for four hours in intermittent operation without recharging the battery. 4. The speed range was 0-0.7m/s and the rolling of vehicle could be controlled within $pm5^{\circ}$ range. 5. From a series of tests, developed vehicle was found to be a useful tool for greenhouse works.

  • PDF