• Title/Summary/Keyword: Automatic driving robot

Search Result 38, Processing Time 0.023 seconds

Effective Route Decision of an Automatic Moving Robot(AMR) using a 2D Spatial Map of the Stereo Camera System

  • Lee, Jae-Soo;Han, Kwang-Sik;Ko, Jung-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.45-53
    • /
    • 2006
  • This paper proposes a method for an effective intelligent route decision for automatic moving robots(AMR) using a 2D spatial map of a stereo camera system. In this method, information about depth and disparity map are detected in the inputting images of a parallel stereo camera. The distance between the automatic moving robot and the obstacle is detected, and a 2D spatial map is obtained from the location coordinates. Then the relative distances between the obstacle and other objects are deduced. The robot move automatically by effective and intelligent route decision using the obtained 2D spatial map. From experiments on robot driving with 240 frames of stereo images, it was found that the error ratio of the calculated distance to the measured distance between objects was very low, 1.52[%] on average.

Development of Agriculture Auto Hose Reel by using Wheeled Mobile Robot (바퀴구동 로봇을 이용한 농업용 자동 호스 릴 장치 개발)

  • Kim, Kyoung-Chul;Ko, Min-Hyuc;Ryuh, Beom-Sahng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1299-1304
    • /
    • 2014
  • This paper is a study for developing an agriculture automatic hose reel of mobile robot. One of the important works in farming is pesticide spraying because it is related to the growth of crops. Therefore, we develop an automatic reel hose and mobile robot. Conducting kinematic analysis of steering performance, the mobile robot is designed to move smoothly even in a small space, and that is verified by simulation. To increase supplying accuracy of the automatic hose reel, the mobile robot use detecting tension mechanism on a hose and a device for the hose deployment. We conduct performance and on-farm evaluation. This system has been maximum speed of 2.5m/s, driving accuracy of ${\pm}0.18^{\circ}$ and driving safety speed of 2m/s. The system would solve an aging population and shortage of workforce in agriculture.

A Survey Study on the development of Omni-Wheel Drive Rider Robot with autonomous driving systems for Disabled People and Senior Citizens (자율주행 탑승용 옴니 드라이브 라이더 로봇 개발에 대한 장애인과 고령자의 욕구조사)

  • Rhee, G.M.;Kim, D.O.;Lee, S.C.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.17-27
    • /
    • 2012
  • This study provides development information on Omni-Wheel Drive Rider Robot, futuristic electric scooters, with autonomous driving systems that are used for people including the disabled and senior. Also, it is meaningful in suggesting alternatives to replace motorized wheelchairs or electric scooters for the future. Prior to development of Omni-Wheel Drive Rider Robot with autonomous driving systems, it surveyed 49 people, including 18 people who own electric scooters and 31 senior people who have not. The summary of the survey is as follows. First, inconveniences during riding and exiting and short mileage due and safety driving to problems of recharging batteries are the most urgent task. For these problems, the study shows that charging time of batteries, mileage, armrests, footrests, angle of a seat are the primary considerations. Second, drivers prefer joystick over steering wheels because of convenience in one-handed driving against dangers from footrest and carriageways sloping roads, paving blocks. One-handed driving can reduce driving fatigues with automatic stop systems. Moreover, the study suggests many design factors related to navigation systems, obstacle avoidance systems, omni-wheels, automatic cover-opening systems in rainy.

  • PDF

Cluster Robots Line formatted Navigation Based on Virtual Hill and Virtual Sink (Virtual Hill 및 Sink 개념 기반의 군집 로봇의 직선 대형 주행 기법)

  • Kang, Yo-Hwan;Lee, Min-Cheol;Kim, Chi-Yen;Yoon, Sung-Min;Noh, Chi-Bum
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.237-246
    • /
    • 2011
  • Robots have been used in many fields due to its performance improvement and variety of its functionality, to the extent which robots can replace human tasks. Individual feature and better performance of robots are expected and required to be created. As their performances and functions have increased, systems have gotten more complicated. Multi mobile robots can perform complex tasks with simple robot system and algorithm. But multi mobile robots face much more complex driving problem than singular driving. To solve the problem, in this study, driving algorithm based on the energy method is applied to the individual robot in a group. This makes a cluster be in a formation automatically and suggests a cluster the automatic driving method so that they stably arrive at the target. The energy method mentioned above is applying attractive force and repulsive force to a special target, other robots or obstacles. This creates the potential energy, and the robot is controlled to drive in the direction of decreasing energy, which basically satisfies lyapunov function. Through this method, a cluster robot is able to create a formation and stably arrives at its target.

Off-Line Programming in the Shipbuilding Industry: Open Architecture and Semi-Automatic Approach

  • Lee Ji-Hyoung;Kim Chang-Sei;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.32-42
    • /
    • 2005
  • In this paper, to improve the efficiency of welding and user convenience in the shipbuilding industry, a PC-based off-line programming (OLP) technique and the development of a robot transfer unit are presented. The developed OLP system is capable of not only robot motion simulations but also automatic generations of a series of robot programs. The strength of the developed OLP system lies in its flexibility in handling the changes of the welding robot's target objects. Moreover, for a precise transfer of the robot to a desired location, an auxiliary mobile platform named a robot-origin-transfer-unit (ROTU) was developed. To enhance the cornering capability of the platform in a narrow area, the developed ROTU is equipped with 2 steering wheels and 1 driving wheel. Both the OLP and the ROTU were field­tested and their performances were proven successful.

A Study on Applications and Design of Driving Controller Circuit in hybrid Stepping Motor (Hybrid Stepping Motor의 Driving Controller 설계와 응용에 관한 연구)

  • 최도순
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.2
    • /
    • pp.74-79
    • /
    • 2001
  • The Stewing Motor has applied for engineering technology and that special used to auto mobile technology, robot technology and still more automatic machinery. If it make used to the motor for automatic machinery. That have high precision step of motor and high efficiency. n order to operation in this paper, the static position of motor to have analyzing, comparison of constant voltage control methode and constant current methode. And designed to a controller circuit of 4 phase unipolar driving and 2 phase bipolar driving of stepping motor.

  • PDF

Smart AGV system using the 2D spatial map

  • Ko, Junghwan;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.54-57
    • /
    • 2016
  • In this paper, the method for an effective and intelligent route decision of the automatic ground vehicle (AGV) using a 2D spatial map of the stereo camera system is proposed. The depth information and disparity map are detected in the inputting images of a parallel stereo camera. The distance between the automatic moving robot and the obstacle detected and the 2D spatial map obtained from the location coordinates, and then the relative distance between the obstacle and the other objects obtained from them. The AGV moves automatically by effective and intelligent route decision using the obtained 2D spatial map. From some experiments on robot driving with 480 frames of the stereo images, it is analyzed that error ratio between the calculated and measured values of the distance between the objects is found to be very low value of 1.57% on average, respectably.

Adaptive Enhancement Method for Robot Sequence Motion Images

  • Yu Zhang;Guan Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.370-376
    • /
    • 2023
  • Aiming at the problems of low image enhancement accuracy, long enhancement time and poor image quality in the traditional robot sequence motion image enhancement methods, an adaptive enhancement method for robot sequence motion image is proposed. The feature representation of the image was obtained by Karhunen-Loeve (K-L) transformation, and the nonlinear relationship between the robot joint angle and the image feature was established. The trajectory planning was carried out in the robot joint space to generate the robot sequence motion image, and an adaptive homomorphic filter was constructed to process the noise of the robot sequence motion image. According to the noise processing results, the brightness of robot sequence motion image was enhanced by using the multi-scale Retinex algorithm. The simulation results showed that the proposed method had higher accuracy and consumed shorter time for enhancement of robot sequence motion images. The simulation results showed that the image enhancement accuracy of the proposed method could reach 100%. The proposed method has important research significance and economic value in intelligent monitoring, automatic driving, and military fields.

Positioning and Driving Control of Fork-type Automatic Guided Vehicle With Laser Navigation

  • Kim, Jaeyong;Cho, Hyunhak;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • We designed and implemented a fork-type automatic guided vehicle (AGV) with a laser guidance system. Most previous AGVs have used two types of guidance systems: magnetgyro and wire guidance. However, these guidance systems have high costs, are difficult to maintain with changes in the operating environment, and can drive only a pre-determined path with installed sensors. A laser guidance system was developed for addressing these issues, but limitations including slow response time and low accuracy remain. We present a laser guidance system and control system for AGVs with laser navigation. For analyzing the performance of the proposed system, we designed and built a fork-type AGV, and performed repetitions of our experiments under the same working conditions. The results show an average positioning error of 51.76 mm between the simulated driving path and the driving path of the actual fork-type AGV. Consequently, we verified that the proposed method is effective and suitable for use in actual AGVs.