• Title/Summary/Keyword: Automatic Weather System (AWS)

Search Result 156, Processing Time 0.022 seconds

A Case Study on the Easterly Wind Characteristics around Gangneung City (강릉지역 동풍 기류 특성에 대한 사례 분석 연구)

  • Lee, Sun-Gi;Kim, Won-Gi;Kim, Sang-Kook;Kim, Do-Soo;Ryu, Shi-Chan;Jeon, Sang-Sik;Park, Kee-Won;Bang, So-Young;Kim, Yeon-Hee;Nam, Jae-Cheol
    • Atmosphere
    • /
    • v.15 no.4
    • /
    • pp.191-202
    • /
    • 2005
  • This study was conducted to estimate how vertically high and horizontally long a sea breeze occurred around Gangneung of the Korean peninsula would be reached to an inland. Geographically, gangneung is located on the center of the east coast shaping an arc, and a coastal line around gangneung has a form extending northwestward and southeastward, respectively. Therefore, an inflow of the northerly has similar effects of the sea breeze since a deep valley of Daegwallyeong, which is one of main ridges of the Taebaek mountains, not only reaches northeastward up to this region but also plays the part of the steering gear changing a wind direction from northerly to easterly, this is, the wind from sea. First of all, the study had defined the sea breeze as a wind blown from NNE to ESE, clockwise. And then, we analyzed characteristics of the sea breeze occurred around gangneung in view of the maximum wind speed and the wind direction for October 1st, 2003 through September 30th, 2004, the upper air database for May through June of 2004, and the wind vector database of AWS (Automatic Weather System). All meteorological information is collected at the weather station of gangneung and by the AWS which is being scattered around this region. Finally, the study figures out that how horizontally long a sea breeze would be reached depends on a level of the easterly inflow. At the first step of the inflow of the sea breeze, the wind from NNW blows into this region by keeping up the speed $3m{\cdot}s^{-1}$, and effects of the northerly are dominated with time and the wind at the inland blows out southwestward cause of the surface friction at the next step. On the other hand, there is no change of wind direction in the inflow at Daegwallyeong because a surface friction of there is smaller than around gangneung, relatively. In other word, the easterly blows toward Daegwallyeong. However, the wind speed is not higher than that of the coast around gangneung.

A Multi-sensor basedVery Short-term Rainfall Forecasting using Radar and Satellite Data - A Case Study of the Busan and Gyeongnam Extreme Rainfall in August, 2014- (레이더-위성자료 이용 다중센서 기반 초단기 강우예측 - 2014년 8월 부산·경남 폭우사례를 중심으로 -)

  • Jang, Sangmin;Park, Kyungwon;Yoon, Sunkwon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.155-169
    • /
    • 2016
  • In this study, we developed a multi-sensor blending short-term rainfall forecasting technique using radar and satellite data during extreme rainfall occurrences in Busan and Gyeongnam region in August 2014. The Tropical Z-R relationship ($Z=32R^{1.65}$) has applied as a optimal radar Z-R relation, which is confirmed that the accuracy is improved during 20mm/h heavy rainfall. In addition, the multi-sensor blending technique has applied using radar and COMS (Communication, Ocean and Meteorological Satellite) data for quantitative precipitation estimation. The very-short-term rainfall forecasting performance was improved in 60 mm/h or more of the strong heavy rainfall events by multi-sensor blending. AWS (Automatic Weather System) and MAPLE data were used for verification of rainfall prediction accuracy. The results have ensured about 50% or more in accuracy of heavy rainfall prediction for 1-hour before rainfall prediction, which are correlations of 10-minute lead time have 0.80 to 0.53, and root mean square errors have 3.99 mm/h to 6.43 mm/h. Through this study, utilizing of multi-sensor blending techniques using radar and satellite data are possible to provide that would be more reliable very-short-term rainfall forecasting data. Further we need ongoing case studies and prediction and estimation of quantitative precipitation by multi-sensor blending is required as well as improving the satellite rainfall estimation algorithm.

Characteristics of Precipitation over the East Coast of Korea Based on the Special Observation during the Winter Season of 2012 (2012년 특별관측 자료를 이용한 동해안 겨울철 강수 특성 분석)

  • Jung, Sueng-Pil;Lim, Yun-Kyu;Kim, Ki-Hoon;Han, Sang-Ok;Kwon, Tae-Yong
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.41-53
    • /
    • 2014
  • The special observation using Radiosonde was performed to investigate precipitation events over the east coast of Korea during the winter season from 5 January to 29 February 2012. This analysis focused on the various indices to describe the characteristics of the atmospheric instability. Equivalent Potential Temperature (EPT) from surface (1000 hPa) to middle level (near 750 hPa) was increased when the precipitation occurred and these levels (1000~750 hPa) had moisture enough to cause the instability of atmosphere. The temporal evolution of Convective Available Potential Energy (CAPE) appeared to be enhanced when the precipitation fell. Similar behavior was also observed for the temporal evolution of Storm Relative Helicity (SRH), indicating that it had a higher value during the precipitation events. To understand a detailed structure of atmospheric condition for the formation of precipitation, the surface remote sensing data and Automatic Weather System (AWS) data were analyzed. We calculated the Total Precipitable Water FLUX (TPWFLUX) using TPW and wind vector. TPWFLUX and precipitation amount showed a statistically significant relationship in the north easterly winds. The result suggested that understanding of the dynamical processes such as wind direction be important to comprehend precipitation phenomenon in the east coast of Korea.

A Study on Establishment of the Optimum Mountain Meteorological Observation Network System for Forest Fire Prevention (산불 방지를 위한 산악기상관측시스템 구축방안)

  • Lee, Si-Young;Chung, Il-Ung;Kim, Sang-Kook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.36-44
    • /
    • 2006
  • In this study, we constructed a forest fire danger map in the Yeongdong area of Gangwon-do and Northeastern area of Gyeongsangbuk-do using a forest fire rating model and geographical information system (GIS). We investigated the appropriate positions of the automatic weather station (AWS) and a comprehensive network solution (a system including measurement, communication and data processing) for the establishment of an optimum mountain meteorological observation network system (MMONS). Also, we suggested a possible plan for combining the MMONS with unmanned monitoring camera systems and wireless relay towers operated by local governments and the Korea Forest Service for prevention of forest fire.

Numerical Study on Wind Resources and Forecast Around Coastal Area Applying Inhomogeneous Data to Variational Data Assimilation (비균질 자료의 변분자료동화를 적용한 남서해안 풍력자원평가 및 예측에 관한 수치연구)

  • Park, Soon-Young;Lee, Hwa-Woon;Kim, Dong-Hyeok;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.983-999
    • /
    • 2010
  • Wind power energy is one of the favorable and fast growing renewable energies. It is most important for exact analysis of wind to evaluate and forecast the wind power energy. The purpose of this study is to improve the performance of numerical atmospheric model by data assimilation over a complex coastal area. The benefit of the profiler is its high temporal resolution and dense observation data at the lower troposphere. Three wind profiler sites used in this study are inhomogeneously situated near south-western coastal area of Korean Peninsula. The method of the data assimilation for using the profiler to the model simulation is the three-dimensional variational data assimilation (3DVAR). The experiment of two cases, with/without assimilation, were conducted for how to effect on model results with wind profiler data. It was found that the assimilated case shows the more reasonable results than the other case compared with vertical observation and surface Automatic Weather Station(AWS) data. Although the effect of sonde data was better than profiler at a higher altitude, the profiler data improves the model performance at lower atmosphere. Comparison with the results of 4 June and 5 June suggests that the efficiency with hourly assimilated profiler data is strongly influenced by synoptic conditions. The reduction rate of Normalized Mean Error(NME), mean bias normalized by averaged wind speed of observation, on 4 June was 28% which was larger than 13% of 5 June. In order to examine the difference in wind power energy, the wind power density(WPD) was calculated and compared.

Mutual Application of Met-Masts Wind Data on Simple Terrain for Wind Resource Assessment (풍력자원평가를 위한 단순지형에서의 육상 기상탑 바람 데이터의 상호 적용)

  • Son, Jin-Hyuk;Ko, Kyung-Nam;Huh, Jong-Chul;Kim, In-Haeng
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.31-39
    • /
    • 2017
  • In order to examine if met-masts wind data can exchange each other for wind resource assessment, an investigation was carried out in Kimnyeong and Haengwon regions of Jeju Island. The two regions are both simple terrain and 4.31 km away from each other. The one-year wind speed data measured by 70 m-high anemometers of each met-mast of the two regions were analysed in detail. Measure-Correlate-Predict (MCP) method was applied to the two regions using the 10-year Automatic Weather System (AWS) wind data of Gujwa region for creating 10-year Wind Statistics by running WindPRO software. The two 10-year Wind Statistics were applied to the self-met mast point for self prediction of Annual Energy Production (AEP) and Capacity Factor (CF) and the each other's met mast point for mutual prediction of them. As a result, when self-prediction values were reference, relative errors of mutual prediction values were less than 1% for AEP and CF so that met masts wind data under the same condition of this study could exchange each other for estimating accurate wind resource.

Comparative study of meteorological data for river level prediction model (하천 수위 예측 모델을 위한 기상 데이터 비교 연구)

  • Cho, Minwoo;Yoon, Jinwook;Kim, Changsu;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.491-493
    • /
    • 2022
  • Flood damage due to torrential rains and typhoons is occurring in many parts of the world. In this paper, we propose a water level prediction model using water level, precipitation, and humidity data, which are key parameters for flood prediction, as input data. Based on the LSTM and GRU models, which have already proven time-series data prediction performance in many research fields, different input datasets were constructed using the ASOS(Automated Synoptic Observing System) data and AWS(Automatic Weather System) data provided by the Korea Meteorological Administration, and performance comparison experiments were conducted. As a result, the best results were obtained when using ASOS data. Through this paper, a performance comparison experiment was conducted according to the input data, and as a future study, it is thought that it can be used as an initial study to develop a system that can make an evacuation decision in advance in connection with the flood risk determination model.

  • PDF

Calculated Damage of Italian Ryegrass in Abnormal Climate Based World Meteorological Organization Approach Using Machine Learning

  • Jae Seong Choi;Ji Yung Kim;Moonju Kim;Kyung Il Sung;Byong Wan Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.190-198
    • /
    • 2023
  • This study was conducted to calculate the damage of Italian ryegrass (IRG) by abnormal climate using machine learning and present the damage through the map. The IRG data collected 1,384. The climate data was collected from the Korea Meteorological Administration Meteorological data open portal.The machine learning model called xDeepFM was used to detect IRG damage. The damage was calculated using climate data from the Automated Synoptic Observing System (95 sites) by machine learning. The calculation of damage was the difference between the Dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of IRG data (1986~2020). The level of abnormal climate was set as a multiple of the standard deviation applying the World Meteorological Organization (WMO) standard. The DMYnormal was ranged from 5,678 to 15,188 kg/ha. The damage of IRG differed according to region and level of abnormal climate with abnormal temperature, precipitation, and wind speed from -1,380 to 1,176, -3 to 2,465, and -830 to 962 kg/ha, respectively. The maximum damage was 1,176 kg/ha when the abnormal temperature was -2 level (+1.04℃), 2,465 kg/ha when the abnormal precipitation was all level and 962 kg/ha when the abnormal wind speed was -2 level (+1.60 ㎧). The damage calculated through the WMO method was presented as an map using QGIS. There was some blank area because there was no climate data. In order to calculate the damage of blank area, it would be possible to use the automatic weather system (AWS), which provides data from more sites than the automated synoptic observing system (ASOS).

Proposed Landslide Warning System Based on Real-time Rainfall Data (급경사지 붕괴위험 판단을 위한 강우기반의 한계영역 설정 기법 연구)

  • Kim, Hong Gyun;Park, Sung Wook;Yeo, Kang Dong;Lee, Moon Se;Park, Hyuck Jin;Lee, Jung Hyun;Hong, Sung Jin
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.197-205
    • /
    • 2016
  • Rainfall-induced landslide disaster case histories are typically required to establish critical lines based on the decrease coefficient for judging the likelihood of slope collapse or failure; however, reliably setting critical lines is difficult because the number of nationwide disaster case histories is insufficient and not well distributed across the region. In this study, we propose a method for setting the critical area to judge the risk of slope collapse without disaster case history information. Past 10 years rainfall data based on decrease coefficient are plotted as points, and a reference line is established by connecting the outermost points. When realtime working rainfall cross the reference line, warning system is operating and this system can be utilized nationwide through setting of reference line for each AWS (Automatic Weather Station). Warnings were effectively predicted at 10 of the sites, and warnings could have been issued 30 min prior to the landslide movement at eight of the sites. These results indicate a reliability of about 67%. To more fully utilize this model, it is necessary to establish nationwide rainfall databases and conduct further studies to develop regional critical areas for landslide disaster prevention.

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.