• Title/Summary/Keyword: Automatic Weather System (AWS)

Search Result 153, Processing Time 0.022 seconds

Real Time Web Display and Data analysis using Observed Data of Automatic Weather System (AWS) (AWS 관측 데이터를 이용한 실시간 웹 디스플레이 및 자료 처리)

  • Kim, Hyun-Jin;Jung, Seung-Hyun;Lee, Si-Woo;Min, Kyung-Duck
    • Journal of the Korean earth science society
    • /
    • v.23 no.7
    • /
    • pp.597-601
    • /
    • 2002
  • Automatic Weather Systems (AWS) were placed at many educational as well as governmental institutes for the measurement of weather in Korea. However, weather information from AWS was not used as a real time system because of the complexity of the web display. For the web display ;ud automatic store of weather data to be used as a real time system, KNU Weather Now-V1.0 was developed. The system is very simple but useful for students and other users. Thus, everybody can use stored weather data and can process the data easily. This study focuses on the development of the system and the educational usage of AWS.

A Method for Correcting Air-Pressure Data Collected by Mini-AWS (소형 자동기상관측장비(Mini-AWS) 기압자료 보정 기법)

  • Ha, Ji-Hun;Kim, Yong-Hyuk;Im, Hyo-Hyuc;Choi, Deokwhan;Lee, Yong Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.182-189
    • /
    • 2016
  • For high accuracy of forecast using numerical weather prediction models, we need to get weather observation data that are large and high dense. Korea Meteorological Administration (KMA) mantains Automatic Weather Stations (AWSs) to get weather observation data, but their installation and maintenance costs are high. Mini-AWS is a very compact automatic weather station that can measure and record temperature, humidity, and pressure. In contrast to AWS, costs of Mini-AWS's installation and maintenance are low. It also has a little space restraints for installing. So it is easier than AWS to install mini-AWS on places where we want to get weather observation data. But we cannot use the data observed from Mini-AWSs directly, because it can be affected by surrounding. In this paper, we suggest a correcting method for using pressure data observed from Mini-AWS as weather observation data. We carried out preconditioning process on pressure data from Mini-AWS. Then they were corrected by using machine learning methods with the aim of adjusting to pressure data of the AWS closest to them. Our experimental results showed that corrected pressure data are in regulation and our correcting method using SVR showed very good performance.

Introduction for the Necessity and Application Example of the Village-based AWS (마을 단위 AWS 구축의 필요성 및 적용사례 소개)

  • Jo, Won Gi;Kang, Dong-hwan;Kim, MoonSu;Shin, In-Kyu;Kim, HyunKoo
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.1003-1010
    • /
    • 2020
  • In this study, the necessity for a village unit Automatic Weather System (AWS) was suggested to obtain correct agricultural weather information by comparing the data of AWS of the weather station with the data of AWS installed in agricultural villages 7 km away. The comparison sites are Hyogyo-ri and Hongseong weather station. The seasonal and monthly averaged and cumulative values of data were calculated and compared. The annual time series and correlation was analyzed to determine the tendency of variation in AWS data. The average values of temperature, relative humidity and wind speed were not much different in comparison with each season. The difference in precipitation was ranged from 13.2 to 91.1 mm. The difference in monthly precipitation ranged from 1.2 to 75.4 mm. The correlation coefficient between temperature, humidity and wind speed was ranged from 0.81 to 0.99 and it of temperature was the highest. The correlation coefficient of precipitation was 0.63 and the lowest among the observed elements. Through this study, precipitation at the weather station and village unit area showed the low correlation and the difference for a quantitative comparison, while the elements excluding precipitation showed the high correlation and the similar annual variation pattern.

Development of an Efficient Small-sized Weather-conditions Forecasting Server (효율적인 소형 기상예보서버 개발)

  • Kim, Sang-Chul;Wang, Gi-Nam;Park, Chang-Mock
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.646-657
    • /
    • 2000
  • We developed an efficient small sized weather condition forecasting system (WFS). A cheap NT-server was utilized for handling a large amount of data, while traditional WFS has conventionally relied on Unix based workstation server. The proposed WFS contains automatic weather observing system (AWS). AWS was designed for collecting weather conditions automatically, and it was linked to WFS in order to provide various weather condition information. The existing two phase scheme and chain code algorithm were used for transforming AWS's data into WFS's data. The WFS's data were mapped into geometric information system using various display techniques. Finally the transformed WFS's data was also converted into JPG (Joint Photographic Group) data type, and the final JPG data could be accessible by others though Internet. The developed system was implemented using WWW environment and has provided weather condition forecasting information. Real case is given to show the presented integrated WFS with detail information.

  • PDF

On the applications of AWS into the Four-Dimensional Data Assimllation Technique for 3 Dimensional Air Quality Model in Use of Atmospheric Environmental Assessment (환경영향평가용 대기질 모델을 위한 AWS자료의 4 차원 동화 기법에 관한 고찰)

  • Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.2
    • /
    • pp.109-116
    • /
    • 2002
  • The diagnostic and prognostic methods for generating 3 dimensional wind field were comparatively analyzed and 4 dimensional data assimilation (FDDA) technique by incorporating Automatic Weather System (AWS) into the prognostic methods was discussed for the urban scale air quality model. The A WS covered the urban scale grid distance of 10.6 km and 4.3 km in South Korea and Kyong-in region, respectively. This is representing that AWS for FDDA could be fairly well accommodated in prognostic model with the meso${\gamma}$~ microa scale (~5 km), indicating that the 3 dimensional wind field by FDDA technique could be a useful interpretative tool in urban area for the atmospheric environmental impact assessment.

The Characteristics of Air Temperature according to the Location of Automatic Weather System (AWS 설치장소에 따른 기온 특성)

  • Joo, Hyong-Don;Lee, Mi-Ja;Ham, In-Wha
    • Atmosphere
    • /
    • v.15 no.3
    • /
    • pp.179-186
    • /
    • 2005
  • Due to several difficulties, a number of Automatic Weather Systems (AWS) operated by Korea Meteorological Administration (KMA) are located on the rooftop so that the forming of standard observation environment to obtain the accuracy is needed. Therefore, the air temperature of AWSs on the synthetic lawn and the concrete of the rooftop is compared with the standard observation temperature. The hourly mean temperature is obtained by monthly and hourly mean value and the difference of temperature is calculated according to the location, the weather phenomenon, and cloud amount. The maximum and the minimum temperatures are compared by the conditions, such as cloud amount, the existence of precipitation or not. Consequently, the temperature on the synthetic lawn is higher than it on the concrete so that it is difficult to obtain same effect from ASOS, on the contrary the installation of AWS on the synthetic lawn seem to be inadequate due to heat or cold source of the building.

Analysis on the Observation Environment of Surface Wind Using GIS data (GIS 자료를 활용한 지상 바람 관측환경 분석)

  • Kwon, A-Rum;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.65-75
    • /
    • 2015
  • In this study, the observation environment of surface wind at an automatic weather station (AWS 288) located at Naei-dong, Mirang-si was analyzed using a computational fluid dynamics (CFD) model and geographic information system (GIS). The 16 cases with different inflow directions were considered before and after construction of an apartment complex around the AWS 288. For three inflow directions (south-south-westerly, south-south-easterly, and north-north-westerly), flow characteristics around the AWS 288 were investigated in detail, focusing on the changes in wind speed and direction at the AWS location. There was marked difference in wind speed between before and after construction of the apartment complex in the south-south-westerly case. In the south-south-easterly and north-north-westerly cases which were frequently observed at the AWS 288, the construction of the apartment complex had no marked influence on the observation of surface wind.

Development of Virtual Ambient Weather Measurement System for the Smart Greenhouse (스마트온실을 위한 가상 외부기상측정시스템 개발)

  • Han, Sae-Ron;Lee, Jae-Su;Hong, Young-Ki;Kim, Gook-Hwan;Kim, Sung-Ki;Kim, Sang-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.5
    • /
    • pp.471-479
    • /
    • 2015
  • This study was conducted to make use of Korea Meteorological Administration(KMA)'s Automatic Weather Station(AWS) data to operate smart green greenhouse. A Web-based KMA AWS data receiving system using JAVA and APM_SETUP 8 on windows 7 platform was developed. The system was composed of server and client. The server program was developed by a Java application to receive weather data from the KMA every 30 minutes and to send the weather data to smart greenhouse. The client program was developed by a Java applets to receive the KMA AWS data from the server every 30 minutes through communicating with the server so that smart greenhouse could recognize the KMA AWS data as the ambient weather information. This system was evaluated by comparing with local weather data measured by Inc. Ezfarm. In case of ambient air temperature, it showed some difference between virtual data and measured data. But, the average absolute deviation of the difference has a little difference as less than 2.24℃. Therefore, the virtual weather data of the developed system was considered available as the ambient weather information of the smart greenhouse.

Generation and Verification on the Synthetic Precipitation/Temperature Data

  • Oh, Jai-Ho;Kang, Hyung-Jeon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2016.09a
    • /
    • pp.25-28
    • /
    • 2016
  • Recently, because of the weather forecasts through the low-resolution data has been limited, the demand of the high-resolution data is sharply increasing. Therefore, in this study, we restore the ultra-high resolution synthetic precipitation and temperature data for 2000-2014 due to small-scale topographic effect using the QPM (Quantitative Precipitation Model)/QTM (Quantitative Temperature Model). First, we reproduce the detailed precipitation and temperature data with 1km resolution using the distribution of Automatic Weather System (AWS) data and Automatic Synoptic Observation System (ASOS) data, which is about 10km resolution with irregular grid over South Korea. Also, we recover the precipitation and temperature data with 1km resolution using the MERRA reanalysis data over North Korea, because there are insufficient observation data. The precipitation and temperature from restored current climate reflect more detailed topographic effect than irregular AWS/ASOS data and MERRA reanalysis data over the Korean peninsula. Based on this analysis, more detailed prospect of regional climate is investigated.

  • PDF

Statistical Characteristics of Local Circulation Winds Observed using Climate Data in the Complex Terrain of Chilgok, Gyeongbuk

  • Ha-Young Kim;Soo-Jin Park;Hae-Dong Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.375-384
    • /
    • 2023
  • Climate data were obtained over an eight-year period (July 2013 to June 2021) using an automatic weather observation system (AWS) installed at the foot of Mt. Geumo in Chilgok, Gyeongbuk. Using climate data, the statistical and meteorological characteristics of the local circulation between the Nakdong River and Mt. Geumo were analyzed. This study is based on automatic weather observation system data for Dongyeong, along with comparative climate data from the Korea Meteorological Administration (Chilgok) and the Gumi meteorological observatory. Over the eight- years, mountain and valley winds have occurred 48 times a year on average, with the highest occurring in May and the weakest winds in June and December. When mountain winds occurred, the temperature in the nearby lowland region more strongly decreased than when valley winds blew. However, the potential to use mountain winds to improve urban thermal environments is limited because mountain winds occur infrequently in summer when a drop in nighttime temperature is required.