• Title/Summary/Keyword: Automatic Weather System

Search Result 277, Processing Time 0.019 seconds

A Study on Establishment of the Optimum Mountain Meteorological Observation Network System for Forest Fire Prevention (산불 방지를 위한 산악기상관측시스템 구축방안)

  • Lee, Si-Young;Chung, Il-Ung;Kim, Sang-Kook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.36-44
    • /
    • 2006
  • In this study, we constructed a forest fire danger map in the Yeongdong area of Gangwon-do and Northeastern area of Gyeongsangbuk-do using a forest fire rating model and geographical information system (GIS). We investigated the appropriate positions of the automatic weather station (AWS) and a comprehensive network solution (a system including measurement, communication and data processing) for the establishment of an optimum mountain meteorological observation network system (MMONS). Also, we suggested a possible plan for combining the MMONS with unmanned monitoring camera systems and wireless relay towers operated by local governments and the Korea Forest Service for prevention of forest fire.

Damage of Whole Crop Maize in Abnormal Climate Using Machine Learning (이상기상 시 사일리지용 옥수수의 기계학습을 이용한 피해량 산출)

  • Kim, Ji Yung;Choi, Jae Seong;Jo, Hyun Wook;Kim, Moon Ju;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.127-136
    • /
    • 2022
  • This study was conducted to estimate the damage of Whole Crop Maize (WCM) according to abnormal climate using machine learning and present the damage through mapping. The collected WCM data was 3,232. The climate data was collected from the Korea Meteorological Administration's meteorological data open portal. Deep Crossing is used for the machine learning model. The damage was calculated using climate data from the Automated Synoptic Observing System (95 sites) by machine learning. The damage was calculated by difference between the Dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of WCM data (1978~2017). The level of abnormal climate was set as a multiple of the standard deviation applying the World Meteorological Organization(WMO) standard. The DMYnormal was ranged from 13,845~19,347 kg/ha. The damage of WCM was differed according to region and level of abnormal climate and ranged from -305 to 310, -54 to 89, and -610 to 813 kg/ha bnormal temperature, precipitation, and wind speed, respectively. The maximum damage was 310 kg/ha when the abnormal temperature was +2 level (+1.42 ℃), 89 kg/ha when the abnormal precipitation was -2 level (-0.12 mm) and 813 kg/ha when the abnormal wind speed was -2 level (-1.60 m/s). The damage calculated through the WMO method was presented as an mapping using QGIS. When calculating the damage of WCM due to abnormal climate, there was some blank area because there was no data. In order to calculate the damage of blank area, it would be possible to use the automatic weather system (AWS), which provides data from more sites than the automated synoptic observing system (ASOS).

Comparing Prediction Uncertainty Analysis Techniques of SWAT Simulated Streamflow Applied to Chungju Dam Watershed (충주댐 유역의 유출량에 대한 SWAT 모형의 예측 불확실성 분석 기법 비교)

  • Joh, Hyung-Kyung;Park, Jong-Yoon;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.861-874
    • /
    • 2012
  • To fulfill applicability of Soil and Water Assessment Tool (SWAT) model, it is important that this model passes through a careful calibration and uncertainty analysis. In recent years, many researchers have come up with various uncertainty analysis techniques for SWAT model. To determine the differences and similarities of typical techniques, we applied three uncertainty analysis procedures to Chungju Dam watershed (6,581.1 $km^2$) of South Korea included in SWAT-Calibration Uncertainty Program (SWAT-CUP): Sequential Uncertainty FItting algorithm ver.2 (SUFI2), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol). As a result, there was no significant difference in the objective function values between SUFI2 and GLUE algorithms. However, ParaSol algorithm shows the worst objective functions, and considerable divergence was also showed in 95PPU bands with each other. The p-factor and r-factor appeared from 0.02 to 0.79 and 0.03 to 0.52 differences in streamflow respectively. In general, the ParaSol algorithm showed the lowest p-factor and r-factor, SUFI2 algorithm was the highest in the p-factor and r-factor. Therefore, in the SWAT model calibration and uncertainty analysis of the automatic methods, we suggest the calibration methods considering p-factor and r-factor. The p-factor means the percentage of observations covered by 95PPU (95 Percent Prediction Uncertainty) band, and r-factor is the average thickness of the 95PPU band.

Managerial Implication of Trails in the Teabaeksan National Park Derived from the Analysis of Visitors Behaviors Using Automatic Visitor Counter Data (탐방객 자동 계수기 데이터를 활용한 태백산국립공원 탐방로 탐방 행태 분석 및 관리 방안 제언)

  • Sung, Chan Yong;Cho, Woo;Kim, Jong-Sub
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.5
    • /
    • pp.446-453
    • /
    • 2020
  • This study built a model to predict the daily number of visitors to 18 trails in the Taebaeksan National Park using the auto-counter system data to analyze the factors affecting the daily number of visitors to each trail and classified the trails by visitors' behaviors. Results of the multiple regression models with the daily number of visitors of the 18 trails indicated that the events, such as the National Foundation Day celebration of Snow Festival, affected the number of visitors of all of the 18 trails and were the most critical factor that determined the daily number of visitors to the Taebaeksan National Park. The long-holidays of three days or longer and other national holidays also affected the daily number of visitors to the trails. Precipitation had a negative impact on the number of visitors of trails where the intention of most visitors was for sightseeing or camping instead of hiking, whereas had no significant impacts on the number of visitors of trails where many visitors intended for hiking. It indicated that visitors who intended for hiking went ahead hiking even if the weather was poor. The effects of temperature had a positive effect on the number of visitors who intended for hiking but a negative effect on the number of visitor to the trails near Danggol Plaza where the Snow Festival was held in each winter, suggesting that the impact of the Snow Festival was the deterministic factor for trail management. Results of K-mean clustering showed that the 18 trails of the Taekbaeksan National Park could be classified into three types: those affected by the Snow Festival (type 1), those that have sightseeing points and so were visited mostly by non-hikers (type 2), and those visited mostly by hikers (type 3). Since visitor behaviors and illegal actions differ according to the trail type, this study's results can be used to prepare a trail management plan based on the trail characteristics.

Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement system (L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol;Lee, Jae-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 2011
  • Soybean has widely grown for its edible bean which has numerous uses. Microwave remote sensing has a great potential over the conventional remote sensing with the visible and infrared spectra due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the crop conditions of a soybean field. Polarimetric backscatter data at L, C, and X-bands were acquired every 10 minutes on the microwave observations at various soybean stages. The polarimetric scatterometer consists of a vector network analyzer, a microwave switch, radio frequency cables, power unit and a personal computer. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. The backscattering coefficients were calculated from the measured data at incidence angle $40^{\circ}$ and full polarization (HH, VV, HV, VH) by applying the radar equation. The soybean growth data such as leaf area index (LAI), plant height, fresh and dry weight, vegetation water content and pod weight were measured periodically throughout the growth season. We measured the temporal variations of backscattering coefficients of the soybean crop at L, C, and X-bands during a soybean growth period. In the three bands, VV-polarized backscattering coefficients were higher than HH-polarized backscattering coefficients until mid-June, and thereafter HH-polarized backscattering coefficients were higher than VV-, HV-polarized back scattering coefficients. However, the cross-over stage (HH > VV) was different for each frequency: DOY 200 for L-band and DOY 210 for both C and X-bands. The temporal trend of the backscattering coefficients for all bands agreed with the soybean growth data such as LAI, dry weight and plant height; i.e., increased until about DOY 271 and decreased afterward. We plotted the relationship between the backscattering coefficients with three bands and soybean growth parameters. The growth parameters were highly correlated with HH-polarization at L-band (over r=0.92).

Analysis of Meteorological Elements in the Cultivated Area of Hadong Green Tea (하동녹차 재배지역의 기상요소별 분석)

  • Hwang, Jung-Gyu;Kim, Jong-Cheol;Cho, Kyoung-Hwan;Han, Jae-Yoon;Kim, Ru-Mi;Kim, Yeon-Su;Cheong, Gang-Won;Kim, Yong-Duck
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.132-142
    • /
    • 2010
  • Characteristics of meteorological elements were analyzed at Hwagae and Agyang where are the representative areas of Hadong green tea cultivation in Korea. An automatic weather monitoring system (AWS) and a simple data log were employed to measure meteorological data such as temperature, relative humidity, precipitation, and wind direction and speed for 2009. The annual average air temperature of Hwagae and Agyang was 14.5 and 14.2, respectively, showing the warmest month in August ($25.4^{\circ}C$ for Hwagae and $24.9^{\circ}C$ for Agyang) and the coldest month in January ($0.3^{\circ}C$ for Hwagae and $0.2^{\circ}C$ for Agyang). Annual average of daily temperature difference (= daily maximum temperature - daily minimum temperature) was $11.3^{\circ}C$ for Hwagae and $11.1^{\circ}C$ for Agyang. Hwagae and Agyang had 62.7% and 65.3% of the annual average relative humidity, respectively. Annual precipitation was 1387 mm for Hwagae and 1793 mm for Agyang of which were higher of 605mm for Hwagae and 835 mm for Agyang compared to that in 2008. Majority of precipitation occurred between May and August, attributing 77.6% for Hwagae and 76.6% for Agyang to the annual precipitation. The annual total sunshine duration was 2054.3 hrs in Hwagae with the longest monthly sunshine duration in May (235.1 hrs) and the shortest monthly sunshine duration in July (102.5 hrs). Dominant wind direction changed seasonally from northwesterly wind in fall and winter to southeasterly wind in spring and summer. The annual average wind speed was 1.5 m $s^{-1}$ with the highest monthly wind speed of 2.0 m $s^{-1}$ in December and the lowest monthly wind speed of 1.1 m $s^{-1}$ in February. It is expected that continuous observation and assessment of meteorological data will improve our understanding of optimal environmental conditions for green tea cultivation and be used for developing models of green tea cultivation in the Hadong area.

A Study on the Wind Ventilation Forest Planning Techniques for Improving the Urban Environment - A Case Study of Daejeon Metropolitan City - (도시환경 개선을 위한 바람길숲 조성 계획기법 개발 연구 - 대전광역시를 사례로 -)

  • Han, Bong-Ho;Park, Seok-Cheol;Park, Soo-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.28-41
    • /
    • 2023
  • The objective of the study was to develop an Urban Windway Forest Creation Planning Technique for the Improvement of the Urban Environment using the case of Daejeon Metropolitan City. Through a spatial analysis of fine dust and heat waves, a basin zone, in which the concentration was relatively serious, was derived, and an area with the potential of cold air flow was selected as the target area for the windway forest development by analyzing the climate and winds in the relevant zone. Extreme fine dust areas included the areas of the Daejeon Industrial Complex Regeneration Business District in Daedeok-gu and Daedeok Techno Valley in Yuseong-gu. Heat wave areas included the areas of Daedeok industrial Complex in Moksang-dong, the Daejeon Industrial Complex Regeneration Business District in Daehwa-dong, and the high-density residential area in Ojeong-dong. As a result of measuring the wind speeds in Daejeon with an Automatic Weather System, the average wind speeds during the day and night were 0.1 to 1.7 m/s,, respectively. So, a plan of for a windway forest that smoothly induces the movement of cold air formed in outer forests at night is required. The fine dust/heat wave intensive management zones of Daejeon Metropolitan City were Daejeoncheon, Yudeungcheon, Gapcheon-Yudeungcheon, and Gapcheon. The windway forest formation plan case involved the old city center of Daejeon Metropolitan City among the four zones, the Gapcheon-Yudeungcheon area, in which the windway formation effect was presumed to be high. The Gapcheon-Yudeungcheon area is a downtown area that benefits from the cold and fresh air generated on Mt. Gyejok and Mt. Wuseong, which are outer forests. Accordingly, the windway forest was planned to spread the cold air to the city center by connecting the cold air generated in the Seosa-myeon forest of Mt. Gyejok and the Namsa-myeon forest of Mt. Wuseong through Gapcheon, Yudeungcheon, and street forests. After selecting the target area for the wind ventilation forest, a climate map and wind formation function evaluation map were prepared for the area, the status of variation wind profiles (night), the status of fine dust generation, and the surface temperature distribution status were grasped in detail. The wind ventilation forest planning concept and detailed target sites by type were identified through this. In addition, a detailed action plan was established according to the direction of creation and setting of the direction of creation for each type of wind ventilation forest.